Mister Exam

Other calculators

Integral of xe^(-3x)cos(5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                    
  /                    
 |                     
 |     -3*x            
 |  x*E    *cos(5*x) dx
 |                     
/                      
0                      
0e3xxcos(5x)dx\int\limits_{0}^{\infty} e^{- 3 x} x \cos{\left(5 x \right)}\, dx
Integral((x*E^(-3*x))*cos(5*x), (x, 0, oo))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=xu{\left(x \right)} = x and let dv(x)=e3xcos(5x)\operatorname{dv}{\left(x \right)} = e^{- 3 x} \cos{\left(5 x \right)}.

    Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

    To find v(x)v{\left(x \right)}:

    1. Use integration by parts, noting that the integrand eventually repeats itself.

      1. For the integrand e3xcos(5x)e^{- 3 x} \cos{\left(5 x \right)}:

        Let u(x)=cos(5x)u{\left(x \right)} = \cos{\left(5 x \right)} and let dv(x)=e3x\operatorname{dv}{\left(x \right)} = e^{- 3 x}.

        Then e3xcos(5x)dx=5e3xsin(5x)3dxe3xcos(5x)3\int e^{- 3 x} \cos{\left(5 x \right)}\, dx = - \int \frac{5 e^{- 3 x} \sin{\left(5 x \right)}}{3}\, dx - \frac{e^{- 3 x} \cos{\left(5 x \right)}}{3}.

      2. For the integrand 5e3xsin(5x)3\frac{5 e^{- 3 x} \sin{\left(5 x \right)}}{3}:

        Let u(x)=5sin(5x)3u{\left(x \right)} = \frac{5 \sin{\left(5 x \right)}}{3} and let dv(x)=e3x\operatorname{dv}{\left(x \right)} = e^{- 3 x}.

        Then e3xcos(5x)dx=(25e3xcos(5x)9)dx+5e3xsin(5x)9e3xcos(5x)3\int e^{- 3 x} \cos{\left(5 x \right)}\, dx = \int \left(- \frac{25 e^{- 3 x} \cos{\left(5 x \right)}}{9}\right)\, dx + \frac{5 e^{- 3 x} \sin{\left(5 x \right)}}{9} - \frac{e^{- 3 x} \cos{\left(5 x \right)}}{3}.

      3. Notice that the integrand has repeated itself, so move it to one side:

        34e3xcos(5x)dx9=5e3xsin(5x)9e3xcos(5x)3\frac{34 \int e^{- 3 x} \cos{\left(5 x \right)}\, dx}{9} = \frac{5 e^{- 3 x} \sin{\left(5 x \right)}}{9} - \frac{e^{- 3 x} \cos{\left(5 x \right)}}{3}

        Therefore,

        e3xcos(5x)dx=5e3xsin(5x)343e3xcos(5x)34\int e^{- 3 x} \cos{\left(5 x \right)}\, dx = \frac{5 e^{- 3 x} \sin{\left(5 x \right)}}{34} - \frac{3 e^{- 3 x} \cos{\left(5 x \right)}}{34}

    Now evaluate the sub-integral.

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      5e3xsin(5x)34dx=5e3xsin(5x)dx34\int \frac{5 e^{- 3 x} \sin{\left(5 x \right)}}{34}\, dx = \frac{5 \int e^{- 3 x} \sin{\left(5 x \right)}\, dx}{34}

      1. Use integration by parts, noting that the integrand eventually repeats itself.

        1. For the integrand e3xsin(5x)e^{- 3 x} \sin{\left(5 x \right)}:

          Let u(x)=sin(5x)u{\left(x \right)} = \sin{\left(5 x \right)} and let dv(x)=e3x\operatorname{dv}{\left(x \right)} = e^{- 3 x}.

          Then e3xsin(5x)dx=(5e3xcos(5x)3)dxe3xsin(5x)3\int e^{- 3 x} \sin{\left(5 x \right)}\, dx = - \int \left(- \frac{5 e^{- 3 x} \cos{\left(5 x \right)}}{3}\right)\, dx - \frac{e^{- 3 x} \sin{\left(5 x \right)}}{3}.

        2. For the integrand 5e3xcos(5x)3- \frac{5 e^{- 3 x} \cos{\left(5 x \right)}}{3}:

          Let u(x)=5cos(5x)3u{\left(x \right)} = - \frac{5 \cos{\left(5 x \right)}}{3} and let dv(x)=e3x\operatorname{dv}{\left(x \right)} = e^{- 3 x}.

          Then e3xsin(5x)dx=(25e3xsin(5x)9)dxe3xsin(5x)35e3xcos(5x)9\int e^{- 3 x} \sin{\left(5 x \right)}\, dx = \int \left(- \frac{25 e^{- 3 x} \sin{\left(5 x \right)}}{9}\right)\, dx - \frac{e^{- 3 x} \sin{\left(5 x \right)}}{3} - \frac{5 e^{- 3 x} \cos{\left(5 x \right)}}{9}.

        3. Notice that the integrand has repeated itself, so move it to one side:

          34e3xsin(5x)dx9=e3xsin(5x)35e3xcos(5x)9\frac{34 \int e^{- 3 x} \sin{\left(5 x \right)}\, dx}{9} = - \frac{e^{- 3 x} \sin{\left(5 x \right)}}{3} - \frac{5 e^{- 3 x} \cos{\left(5 x \right)}}{9}

          Therefore,

          e3xsin(5x)dx=3e3xsin(5x)345e3xcos(5x)34\int e^{- 3 x} \sin{\left(5 x \right)}\, dx = - \frac{3 e^{- 3 x} \sin{\left(5 x \right)}}{34} - \frac{5 e^{- 3 x} \cos{\left(5 x \right)}}{34}

      So, the result is: 15e3xsin(5x)115625e3xcos(5x)1156- \frac{15 e^{- 3 x} \sin{\left(5 x \right)}}{1156} - \frac{25 e^{- 3 x} \cos{\left(5 x \right)}}{1156}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (3e3xcos(5x)34)dx=3e3xcos(5x)dx34\int \left(- \frac{3 e^{- 3 x} \cos{\left(5 x \right)}}{34}\right)\, dx = - \frac{3 \int e^{- 3 x} \cos{\left(5 x \right)}\, dx}{34}

      1. Use integration by parts, noting that the integrand eventually repeats itself.

        1. For the integrand e3xcos(5x)e^{- 3 x} \cos{\left(5 x \right)}:

          Let u(x)=cos(5x)u{\left(x \right)} = \cos{\left(5 x \right)} and let dv(x)=e3x\operatorname{dv}{\left(x \right)} = e^{- 3 x}.

          Then e3xcos(5x)dx=5e3xsin(5x)3dxe3xcos(5x)3\int e^{- 3 x} \cos{\left(5 x \right)}\, dx = - \int \frac{5 e^{- 3 x} \sin{\left(5 x \right)}}{3}\, dx - \frac{e^{- 3 x} \cos{\left(5 x \right)}}{3}.

        2. For the integrand 5e3xsin(5x)3\frac{5 e^{- 3 x} \sin{\left(5 x \right)}}{3}:

          Let u(x)=5sin(5x)3u{\left(x \right)} = \frac{5 \sin{\left(5 x \right)}}{3} and let dv(x)=e3x\operatorname{dv}{\left(x \right)} = e^{- 3 x}.

          Then e3xcos(5x)dx=(25e3xcos(5x)9)dx+5e3xsin(5x)9e3xcos(5x)3\int e^{- 3 x} \cos{\left(5 x \right)}\, dx = \int \left(- \frac{25 e^{- 3 x} \cos{\left(5 x \right)}}{9}\right)\, dx + \frac{5 e^{- 3 x} \sin{\left(5 x \right)}}{9} - \frac{e^{- 3 x} \cos{\left(5 x \right)}}{3}.

        3. Notice that the integrand has repeated itself, so move it to one side:

          34e3xcos(5x)dx9=5e3xsin(5x)9e3xcos(5x)3\frac{34 \int e^{- 3 x} \cos{\left(5 x \right)}\, dx}{9} = \frac{5 e^{- 3 x} \sin{\left(5 x \right)}}{9} - \frac{e^{- 3 x} \cos{\left(5 x \right)}}{3}

          Therefore,

          e3xcos(5x)dx=5e3xsin(5x)343e3xcos(5x)34\int e^{- 3 x} \cos{\left(5 x \right)}\, dx = \frac{5 e^{- 3 x} \sin{\left(5 x \right)}}{34} - \frac{3 e^{- 3 x} \cos{\left(5 x \right)}}{34}

      So, the result is: 15e3xsin(5x)1156+9e3xcos(5x)1156- \frac{15 e^{- 3 x} \sin{\left(5 x \right)}}{1156} + \frac{9 e^{- 3 x} \cos{\left(5 x \right)}}{1156}

    The result is: 15e3xsin(5x)5784e3xcos(5x)289- \frac{15 e^{- 3 x} \sin{\left(5 x \right)}}{578} - \frac{4 e^{- 3 x} \cos{\left(5 x \right)}}{289}

  3. Now simplify:

    (85xsin(5x)51xcos(5x)+15sin(5x)+8cos(5x))e3x578\frac{\left(85 x \sin{\left(5 x \right)} - 51 x \cos{\left(5 x \right)} + 15 \sin{\left(5 x \right)} + 8 \cos{\left(5 x \right)}\right) e^{- 3 x}}{578}

  4. Add the constant of integration:

    (85xsin(5x)51xcos(5x)+15sin(5x)+8cos(5x))e3x578+constant\frac{\left(85 x \sin{\left(5 x \right)} - 51 x \cos{\left(5 x \right)} + 15 \sin{\left(5 x \right)} + 8 \cos{\left(5 x \right)}\right) e^{- 3 x}}{578}+ \mathrm{constant}


The answer is:

(85xsin(5x)51xcos(5x)+15sin(5x)+8cos(5x))e3x578+constant\frac{\left(85 x \sin{\left(5 x \right)} - 51 x \cos{\left(5 x \right)} + 15 \sin{\left(5 x \right)} + 8 \cos{\left(5 x \right)}\right) e^{- 3 x}}{578}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                                                          
 |                             /              -3*x      -3*x         \               -3*x       -3*x         
 |    -3*x                     |  3*cos(5*x)*e       5*e    *sin(5*x)|   4*cos(5*x)*e       15*e    *sin(5*x)
 | x*E    *cos(5*x) dx = C + x*|- ---------------- + ----------------| + ---------------- + -----------------
 |                             \         34                 34       /         289                 578       
/                                                                                                            
e3xxcos(5x)dx=C+x(5e3xsin(5x)343e3xcos(5x)34)+15e3xsin(5x)578+4e3xcos(5x)289\int e^{- 3 x} x \cos{\left(5 x \right)}\, dx = C + x \left(\frac{5 e^{- 3 x} \sin{\left(5 x \right)}}{34} - \frac{3 e^{- 3 x} \cos{\left(5 x \right)}}{34}\right) + \frac{15 e^{- 3 x} \sin{\left(5 x \right)}}{578} + \frac{4 e^{- 3 x} \cos{\left(5 x \right)}}{289}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.000.02
The answer [src]
-4/289
4289- \frac{4}{289}
=
=
-4/289
4289- \frac{4}{289}
-4/289

    Use the examples entering the upper and lower limits of integration.