Integral of xe^(-3x)cos(5x) dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=e−3xcos(5x).
Then du(x)=1.
To find v(x):
-
Use integration by parts, noting that the integrand eventually repeats itself.
-
For the integrand e−3xcos(5x):
Let u(x)=cos(5x) and let dv(x)=e−3x.
Then ∫e−3xcos(5x)dx=−∫35e−3xsin(5x)dx−3e−3xcos(5x).
-
For the integrand 35e−3xsin(5x):
Let u(x)=35sin(5x) and let dv(x)=e−3x.
Then ∫e−3xcos(5x)dx=∫(−925e−3xcos(5x))dx+95e−3xsin(5x)−3e−3xcos(5x).
-
Notice that the integrand has repeated itself, so move it to one side:
934∫e−3xcos(5x)dx=95e−3xsin(5x)−3e−3xcos(5x)
Therefore,
∫e−3xcos(5x)dx=345e−3xsin(5x)−343e−3xcos(5x)
Now evaluate the sub-integral.
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫345e−3xsin(5x)dx=345∫e−3xsin(5x)dx
-
Use integration by parts, noting that the integrand eventually repeats itself.
-
For the integrand e−3xsin(5x):
Let u(x)=sin(5x) and let dv(x)=e−3x.
Then ∫e−3xsin(5x)dx=−∫(−35e−3xcos(5x))dx−3e−3xsin(5x).
-
For the integrand −35e−3xcos(5x):
Let u(x)=−35cos(5x) and let dv(x)=e−3x.
Then ∫e−3xsin(5x)dx=∫(−925e−3xsin(5x))dx−3e−3xsin(5x)−95e−3xcos(5x).
-
Notice that the integrand has repeated itself, so move it to one side:
934∫e−3xsin(5x)dx=−3e−3xsin(5x)−95e−3xcos(5x)
Therefore,
∫e−3xsin(5x)dx=−343e−3xsin(5x)−345e−3xcos(5x)
So, the result is: −115615e−3xsin(5x)−115625e−3xcos(5x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−343e−3xcos(5x))dx=−343∫e−3xcos(5x)dx
-
Use integration by parts, noting that the integrand eventually repeats itself.
-
For the integrand e−3xcos(5x):
Let u(x)=cos(5x) and let dv(x)=e−3x.
Then ∫e−3xcos(5x)dx=−∫35e−3xsin(5x)dx−3e−3xcos(5x).
-
For the integrand 35e−3xsin(5x):
Let u(x)=35sin(5x) and let dv(x)=e−3x.
Then ∫e−3xcos(5x)dx=∫(−925e−3xcos(5x))dx+95e−3xsin(5x)−3e−3xcos(5x).
-
Notice that the integrand has repeated itself, so move it to one side:
934∫e−3xcos(5x)dx=95e−3xsin(5x)−3e−3xcos(5x)
Therefore,
∫e−3xcos(5x)dx=345e−3xsin(5x)−343e−3xcos(5x)
So, the result is: −115615e−3xsin(5x)+11569e−3xcos(5x)
The result is: −57815e−3xsin(5x)−2894e−3xcos(5x)
-
Now simplify:
578(85xsin(5x)−51xcos(5x)+15sin(5x)+8cos(5x))e−3x
-
Add the constant of integration:
578(85xsin(5x)−51xcos(5x)+15sin(5x)+8cos(5x))e−3x+constant
The answer is:
578(85xsin(5x)−51xcos(5x)+15sin(5x)+8cos(5x))e−3x+constant
The answer (Indefinite)
[src]
/
| / -3*x -3*x \ -3*x -3*x
| -3*x | 3*cos(5*x)*e 5*e *sin(5*x)| 4*cos(5*x)*e 15*e *sin(5*x)
| x*E *cos(5*x) dx = C + x*|- ---------------- + ----------------| + ---------------- + -----------------
| \ 34 34 / 289 578
/
∫e−3xxcos(5x)dx=C+x(345e−3xsin(5x)−343e−3xcos(5x))+57815e−3xsin(5x)+2894e−3xcos(5x)
The graph
−2894
=
−2894
Use the examples entering the upper and lower limits of integration.