Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((1+2*x)/(-1+x))^x
Limit of 2*x*sin(5*x)/5
Limit of (1-cos(8*x))/x^2
Limit of sin(2*x)/tan(x)
Derivative of
:
cos(5*x)
Integral of d{x}
:
cos(5*x)
Identical expressions
cos(five *x)
co sinus of e of (5 multiply by x)
co sinus of e of (five multiply by x)
cos(5x)
cos5x
Limit of the function
/
cos(5*x)
Limit of the function cos(5*x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim cos(5*x) x->oo
lim
x
→
∞
cos
(
5
x
)
\lim_{x \to \infty} \cos{\left(5 x \right)}
x
→
∞
lim
cos
(
5
x
)
Limit(cos(5*x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
2
-2
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
cos
(
5
x
)
=
⟨
−
1
,
1
⟩
\lim_{x \to \infty} \cos{\left(5 x \right)} = \left\langle -1, 1\right\rangle
x
→
∞
lim
cos
(
5
x
)
=
⟨
−
1
,
1
⟩
lim
x
→
0
−
cos
(
5
x
)
=
1
\lim_{x \to 0^-} \cos{\left(5 x \right)} = 1
x
→
0
−
lim
cos
(
5
x
)
=
1
More at x→0 from the left
lim
x
→
0
+
cos
(
5
x
)
=
1
\lim_{x \to 0^+} \cos{\left(5 x \right)} = 1
x
→
0
+
lim
cos
(
5
x
)
=
1
More at x→0 from the right
lim
x
→
1
−
cos
(
5
x
)
=
cos
(
5
)
\lim_{x \to 1^-} \cos{\left(5 x \right)} = \cos{\left(5 \right)}
x
→
1
−
lim
cos
(
5
x
)
=
cos
(
5
)
More at x→1 from the left
lim
x
→
1
+
cos
(
5
x
)
=
cos
(
5
)
\lim_{x \to 1^+} \cos{\left(5 x \right)} = \cos{\left(5 \right)}
x
→
1
+
lim
cos
(
5
x
)
=
cos
(
5
)
More at x→1 from the right
lim
x
→
−
∞
cos
(
5
x
)
=
⟨
−
1
,
1
⟩
\lim_{x \to -\infty} \cos{\left(5 x \right)} = \left\langle -1, 1\right\rangle
x
→
−
∞
lim
cos
(
5
x
)
=
⟨
−
1
,
1
⟩
More at x→-oo
Rapid solution
[src]
<-1, 1>
⟨
−
1
,
1
⟩
\left\langle -1, 1\right\rangle
⟨
−
1
,
1
⟩
Expand and simplify
The graph