Mister Exam

Other calculators

Integral of 2sin(6x)*cos(5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  2*sin(6*x)*cos(5*x) dx
 |                        
/                         
0                         
012sin(6x)cos(5x)dx\int\limits_{0}^{1} 2 \sin{\left(6 x \right)} \cos{\left(5 x \right)}\, dx
Integral((2*sin(6*x))*cos(5*x), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    2sin(6x)cos(5x)=1024sin5(x)cos6(x)1280sin5(x)cos4(x)+320sin5(x)cos2(x)1024sin3(x)cos6(x)+1280sin3(x)cos4(x)320sin3(x)cos2(x)+192sin(x)cos6(x)240sin(x)cos4(x)+60sin(x)cos2(x)2 \sin{\left(6 x \right)} \cos{\left(5 x \right)} = 1024 \sin^{5}{\left(x \right)} \cos^{6}{\left(x \right)} - 1280 \sin^{5}{\left(x \right)} \cos^{4}{\left(x \right)} + 320 \sin^{5}{\left(x \right)} \cos^{2}{\left(x \right)} - 1024 \sin^{3}{\left(x \right)} \cos^{6}{\left(x \right)} + 1280 \sin^{3}{\left(x \right)} \cos^{4}{\left(x \right)} - 320 \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)} + 192 \sin{\left(x \right)} \cos^{6}{\left(x \right)} - 240 \sin{\left(x \right)} \cos^{4}{\left(x \right)} + 60 \sin{\left(x \right)} \cos^{2}{\left(x \right)}

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1024sin5(x)cos6(x)dx=1024sin5(x)cos6(x)dx\int 1024 \sin^{5}{\left(x \right)} \cos^{6}{\left(x \right)}\, dx = 1024 \int \sin^{5}{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin5(x)cos6(x)=(1cos2(x))2sin(x)cos6(x)\sin^{5}{\left(x \right)} \cos^{6}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} \cos^{6}{\left(x \right)}

      2. There are multiple ways to do this integral.

        Method #1

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

          (u10+2u8u6)du\int \left(- u^{10} + 2 u^{8} - u^{6}\right)\, du

          1. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u10)du=u10du\int \left(- u^{10}\right)\, du = - \int u^{10}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u10du=u1111\int u^{10}\, du = \frac{u^{11}}{11}

              So, the result is: u1111- \frac{u^{11}}{11}

            1. The integral of a constant times a function is the constant times the integral of the function:

              2u8du=2u8du\int 2 u^{8}\, du = 2 \int u^{8}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

              So, the result is: 2u99\frac{2 u^{9}}{9}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

              So, the result is: u77- \frac{u^{7}}{7}

            The result is: u1111+2u99u77- \frac{u^{11}}{11} + \frac{2 u^{9}}{9} - \frac{u^{7}}{7}

          Now substitute uu back in:

          cos11(x)11+2cos9(x)9cos7(x)7- \frac{\cos^{11}{\left(x \right)}}{11} + \frac{2 \cos^{9}{\left(x \right)}}{9} - \frac{\cos^{7}{\left(x \right)}}{7}

        Method #2

        1. Rewrite the integrand:

          (1cos2(x))2sin(x)cos6(x)=sin(x)cos10(x)2sin(x)cos8(x)+sin(x)cos6(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} \cos^{6}{\left(x \right)} = \sin{\left(x \right)} \cos^{10}{\left(x \right)} - 2 \sin{\left(x \right)} \cos^{8}{\left(x \right)} + \sin{\left(x \right)} \cos^{6}{\left(x \right)}

        2. Integrate term-by-term:

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            (u10)du\int \left(- u^{10}\right)\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              u10du=u10du\int u^{10}\, du = - \int u^{10}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u10du=u1111\int u^{10}\, du = \frac{u^{11}}{11}

              So, the result is: u1111- \frac{u^{11}}{11}

            Now substitute uu back in:

            cos11(x)11- \frac{\cos^{11}{\left(x \right)}}{11}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (2sin(x)cos8(x))dx=2sin(x)cos8(x)dx\int \left(- 2 \sin{\left(x \right)} \cos^{8}{\left(x \right)}\right)\, dx = - 2 \int \sin{\left(x \right)} \cos^{8}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              (u8)du\int \left(- u^{8}\right)\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                u8du=u8du\int u^{8}\, du = - \int u^{8}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

                So, the result is: u99- \frac{u^{9}}{9}

              Now substitute uu back in:

              cos9(x)9- \frac{\cos^{9}{\left(x \right)}}{9}

            So, the result is: 2cos9(x)9\frac{2 \cos^{9}{\left(x \right)}}{9}

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            (u6)du\int \left(- u^{6}\right)\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              u6du=u6du\int u^{6}\, du = - \int u^{6}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

              So, the result is: u77- \frac{u^{7}}{7}

            Now substitute uu back in:

            cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

          The result is: cos11(x)11+2cos9(x)9cos7(x)7- \frac{\cos^{11}{\left(x \right)}}{11} + \frac{2 \cos^{9}{\left(x \right)}}{9} - \frac{\cos^{7}{\left(x \right)}}{7}

        Method #3

        1. Rewrite the integrand:

          (1cos2(x))2sin(x)cos6(x)=sin(x)cos10(x)2sin(x)cos8(x)+sin(x)cos6(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} \cos^{6}{\left(x \right)} = \sin{\left(x \right)} \cos^{10}{\left(x \right)} - 2 \sin{\left(x \right)} \cos^{8}{\left(x \right)} + \sin{\left(x \right)} \cos^{6}{\left(x \right)}

        2. Integrate term-by-term:

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            (u10)du\int \left(- u^{10}\right)\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              u10du=u10du\int u^{10}\, du = - \int u^{10}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u10du=u1111\int u^{10}\, du = \frac{u^{11}}{11}

              So, the result is: u1111- \frac{u^{11}}{11}

            Now substitute uu back in:

            cos11(x)11- \frac{\cos^{11}{\left(x \right)}}{11}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (2sin(x)cos8(x))dx=2sin(x)cos8(x)dx\int \left(- 2 \sin{\left(x \right)} \cos^{8}{\left(x \right)}\right)\, dx = - 2 \int \sin{\left(x \right)} \cos^{8}{\left(x \right)}\, dx

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              (u8)du\int \left(- u^{8}\right)\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                u8du=u8du\int u^{8}\, du = - \int u^{8}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

                So, the result is: u99- \frac{u^{9}}{9}

              Now substitute uu back in:

              cos9(x)9- \frac{\cos^{9}{\left(x \right)}}{9}

            So, the result is: 2cos9(x)9\frac{2 \cos^{9}{\left(x \right)}}{9}

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            (u6)du\int \left(- u^{6}\right)\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              u6du=u6du\int u^{6}\, du = - \int u^{6}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

              So, the result is: u77- \frac{u^{7}}{7}

            Now substitute uu back in:

            cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

          The result is: cos11(x)11+2cos9(x)9cos7(x)7- \frac{\cos^{11}{\left(x \right)}}{11} + \frac{2 \cos^{9}{\left(x \right)}}{9} - \frac{\cos^{7}{\left(x \right)}}{7}

      So, the result is: 1024cos11(x)11+2048cos9(x)91024cos7(x)7- \frac{1024 \cos^{11}{\left(x \right)}}{11} + \frac{2048 \cos^{9}{\left(x \right)}}{9} - \frac{1024 \cos^{7}{\left(x \right)}}{7}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (1280sin5(x)cos4(x))dx=1280sin5(x)cos4(x)dx\int \left(- 1280 \sin^{5}{\left(x \right)} \cos^{4}{\left(x \right)}\right)\, dx = - 1280 \int \sin^{5}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin5(x)cos4(x)=(1cos2(x))2sin(x)cos4(x)\sin^{5}{\left(x \right)} \cos^{4}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} \cos^{4}{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u8+2u6u4)du\int \left(- u^{8} + 2 u^{6} - u^{4}\right)\, du

        1. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u8)du=u8du\int \left(- u^{8}\right)\, du = - \int u^{8}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

            So, the result is: u99- \frac{u^{9}}{9}

          1. The integral of a constant times a function is the constant times the integral of the function:

            2u6du=2u6du\int 2 u^{6}\, du = 2 \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: 2u77\frac{2 u^{7}}{7}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          The result is: u99+2u77u55- \frac{u^{9}}{9} + \frac{2 u^{7}}{7} - \frac{u^{5}}{5}

        Now substitute uu back in:

        cos9(x)9+2cos7(x)7cos5(x)5- \frac{\cos^{9}{\left(x \right)}}{9} + \frac{2 \cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}

      So, the result is: 1280cos9(x)92560cos7(x)7+256cos5(x)\frac{1280 \cos^{9}{\left(x \right)}}{9} - \frac{2560 \cos^{7}{\left(x \right)}}{7} + 256 \cos^{5}{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      320sin5(x)cos2(x)dx=320sin5(x)cos2(x)dx\int 320 \sin^{5}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = 320 \int \sin^{5}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin5(x)cos2(x)=(1cos2(x))2sin(x)cos2(x)\sin^{5}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} \cos^{2}{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u6+2u4u2)du\int \left(- u^{6} + 2 u^{4} - u^{2}\right)\, du

        1. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: u77- \frac{u^{7}}{7}

          1. The integral of a constant times a function is the constant times the integral of the function:

            2u4du=2u4du\int 2 u^{4}\, du = 2 \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: 2u55\frac{2 u^{5}}{5}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          The result is: u77+2u55u33- \frac{u^{7}}{7} + \frac{2 u^{5}}{5} - \frac{u^{3}}{3}

        Now substitute uu back in:

        cos7(x)7+2cos5(x)5cos3(x)3- \frac{\cos^{7}{\left(x \right)}}{7} + \frac{2 \cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}

      So, the result is: 320cos7(x)7+128cos5(x)320cos3(x)3- \frac{320 \cos^{7}{\left(x \right)}}{7} + 128 \cos^{5}{\left(x \right)} - \frac{320 \cos^{3}{\left(x \right)}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (1024sin3(x)cos6(x))dx=1024sin3(x)cos6(x)dx\int \left(- 1024 \sin^{3}{\left(x \right)} \cos^{6}{\left(x \right)}\right)\, dx = - 1024 \int \sin^{3}{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin3(x)cos6(x)=(1cos2(x))sin(x)cos6(x)\sin^{3}{\left(x \right)} \cos^{6}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{6}{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u8u6)du\int \left(u^{8} - u^{6}\right)\, du

        1. Integrate term-by-term:

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: u77- \frac{u^{7}}{7}

          The result is: u99u77\frac{u^{9}}{9} - \frac{u^{7}}{7}

        Now substitute uu back in:

        cos9(x)9cos7(x)7\frac{\cos^{9}{\left(x \right)}}{9} - \frac{\cos^{7}{\left(x \right)}}{7}

      So, the result is: 1024cos9(x)9+1024cos7(x)7- \frac{1024 \cos^{9}{\left(x \right)}}{9} + \frac{1024 \cos^{7}{\left(x \right)}}{7}

    1. The integral of a constant times a function is the constant times the integral of the function:

      1280sin3(x)cos4(x)dx=1280sin3(x)cos4(x)dx\int 1280 \sin^{3}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = 1280 \int \sin^{3}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin3(x)cos4(x)=(1cos2(x))sin(x)cos4(x)\sin^{3}{\left(x \right)} \cos^{4}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{4}{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u6u4)du\int \left(u^{6} - u^{4}\right)\, du

        1. Integrate term-by-term:

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          The result is: u77u55\frac{u^{7}}{7} - \frac{u^{5}}{5}

        Now substitute uu back in:

        cos7(x)7cos5(x)5\frac{\cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}

      So, the result is: 1280cos7(x)7256cos5(x)\frac{1280 \cos^{7}{\left(x \right)}}{7} - 256 \cos^{5}{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (320sin3(x)cos2(x))dx=320sin3(x)cos2(x)dx\int \left(- 320 \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - 320 \int \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin3(x)cos2(x)=(1cos2(x))sin(x)cos2(x)\sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{2}{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u4u2)du\int \left(u^{4} - u^{2}\right)\, du

        1. Integrate term-by-term:

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          The result is: u55u33\frac{u^{5}}{5} - \frac{u^{3}}{3}

        Now substitute uu back in:

        cos5(x)5cos3(x)3\frac{\cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}

      So, the result is: 64cos5(x)+320cos3(x)3- 64 \cos^{5}{\left(x \right)} + \frac{320 \cos^{3}{\left(x \right)}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      192sin(x)cos6(x)dx=192sin(x)cos6(x)dx\int 192 \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx = 192 \int \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        (u6)du\int \left(- u^{6}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          u6du=u6du\int u^{6}\, du = - \int u^{6}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

          So, the result is: u77- \frac{u^{7}}{7}

        Now substitute uu back in:

        cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

      So, the result is: 192cos7(x)7- \frac{192 \cos^{7}{\left(x \right)}}{7}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (240sin(x)cos4(x))dx=240sin(x)cos4(x)dx\int \left(- 240 \sin{\left(x \right)} \cos^{4}{\left(x \right)}\right)\, dx = - 240 \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        (u4)du\int \left(- u^{4}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          u4du=u4du\int u^{4}\, du = - \int u^{4}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          So, the result is: u55- \frac{u^{5}}{5}

        Now substitute uu back in:

        cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

      So, the result is: 48cos5(x)48 \cos^{5}{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      60sin(x)cos2(x)dx=60sin(x)cos2(x)dx\int 60 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = 60 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        (u2)du\int \left(- u^{2}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          u2du=u2du\int u^{2}\, du = - \int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: u33- \frac{u^{3}}{3}

        Now substitute uu back in:

        cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

      So, the result is: 20cos3(x)- 20 \cos^{3}{\left(x \right)}

    The result is: 1024cos11(x)11+256cos9(x)256cos7(x)+112cos5(x)20cos3(x)- \frac{1024 \cos^{11}{\left(x \right)}}{11} + 256 \cos^{9}{\left(x \right)} - 256 \cos^{7}{\left(x \right)} + 112 \cos^{5}{\left(x \right)} - 20 \cos^{3}{\left(x \right)}

  3. Now simplify:

    (1024cos8(x)11+256cos6(x)256cos4(x)+112cos2(x)20)cos3(x)\left(- \frac{1024 \cos^{8}{\left(x \right)}}{11} + 256 \cos^{6}{\left(x \right)} - 256 \cos^{4}{\left(x \right)} + 112 \cos^{2}{\left(x \right)} - 20\right) \cos^{3}{\left(x \right)}

  4. Add the constant of integration:

    (1024cos8(x)11+256cos6(x)256cos4(x)+112cos2(x)20)cos3(x)+constant\left(- \frac{1024 \cos^{8}{\left(x \right)}}{11} + 256 \cos^{6}{\left(x \right)} - 256 \cos^{4}{\left(x \right)} + 112 \cos^{2}{\left(x \right)} - 20\right) \cos^{3}{\left(x \right)}+ \mathrm{constant}


The answer is:

(1024cos8(x)11+256cos6(x)256cos4(x)+112cos2(x)20)cos3(x)+constant\left(- \frac{1024 \cos^{8}{\left(x \right)}}{11} + 256 \cos^{6}{\left(x \right)} - 256 \cos^{4}{\left(x \right)} + 112 \cos^{2}{\left(x \right)} - 20\right) \cos^{3}{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                                            11   
 |                                     7            3             5             9      1024*cos  (x)
 | 2*sin(6*x)*cos(5*x) dx = C - 256*cos (x) - 20*cos (x) + 112*cos (x) + 256*cos (x) - -------------
 |                                                                                           11     
/                                                                                                   
2sin(6x)cos(5x)dx=C1024cos11(x)11+256cos9(x)256cos7(x)+112cos5(x)20cos3(x)\int 2 \sin{\left(6 x \right)} \cos{\left(5 x \right)}\, dx = C - \frac{1024 \cos^{11}{\left(x \right)}}{11} + 256 \cos^{9}{\left(x \right)} - 256 \cos^{7}{\left(x \right)} + 112 \cos^{5}{\left(x \right)} - 20 \cos^{3}{\left(x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
12   12*cos(5)*cos(6)   10*sin(5)*sin(6)
-- - ---------------- - ----------------
11          11                 11       
12cos(5)cos(6)1110sin(5)sin(6)11+1211- \frac{12 \cos{\left(5 \right)} \cos{\left(6 \right)}}{11} - \frac{10 \sin{\left(5 \right)} \sin{\left(6 \right)}}{11} + \frac{12}{11}
=
=
12   12*cos(5)*cos(6)   10*sin(5)*sin(6)
-- - ---------------- - ----------------
11          11                 11       
12cos(5)cos(6)1110sin(5)sin(6)11+1211- \frac{12 \cos{\left(5 \right)} \cos{\left(6 \right)}}{11} - \frac{10 \sin{\left(5 \right)} \sin{\left(6 \right)}}{11} + \frac{12}{11}
12/11 - 12*cos(5)*cos(6)/11 - 10*sin(5)*sin(6)/11
Numerical answer [src]
0.550204448860219
0.550204448860219

    Use the examples entering the upper and lower limits of integration.