Integral of 2sin(6x)*cos(5x) dx
The solution
Detail solution
-
Rewrite the integrand:
2sin(6x)cos(5x)=1024sin5(x)cos6(x)−1280sin5(x)cos4(x)+320sin5(x)cos2(x)−1024sin3(x)cos6(x)+1280sin3(x)cos4(x)−320sin3(x)cos2(x)+192sin(x)cos6(x)−240sin(x)cos4(x)+60sin(x)cos2(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫1024sin5(x)cos6(x)dx=1024∫sin5(x)cos6(x)dx
-
Rewrite the integrand:
sin5(x)cos6(x)=(1−cos2(x))2sin(x)cos6(x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(−u10+2u8−u6)du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u10)du=−∫u10du
-
The integral of un is n+1un+1 when n=−1:
∫u10du=11u11
So, the result is: −11u11
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u8du=2∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
So, the result is: 92u9
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u6)du=−∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −7u7
The result is: −11u11+92u9−7u7
Now substitute u back in:
−11cos11(x)+92cos9(x)−7cos7(x)
Method #2
-
Rewrite the integrand:
(1−cos2(x))2sin(x)cos6(x)=sin(x)cos10(x)−2sin(x)cos8(x)+sin(x)cos6(x)
-
Integrate term-by-term:
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u10)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u10du=−∫u10du
-
The integral of un is n+1un+1 when n=−1:
∫u10du=11u11
So, the result is: −11u11
Now substitute u back in:
−11cos11(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin(x)cos8(x))dx=−2∫sin(x)cos8(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u8)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u8du=−∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
So, the result is: −9u9
Now substitute u back in:
−9cos9(x)
So, the result is: 92cos9(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u6)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u6du=−∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −7u7
Now substitute u back in:
−7cos7(x)
The result is: −11cos11(x)+92cos9(x)−7cos7(x)
Method #3
-
Rewrite the integrand:
(1−cos2(x))2sin(x)cos6(x)=sin(x)cos10(x)−2sin(x)cos8(x)+sin(x)cos6(x)
-
Integrate term-by-term:
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u10)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u10du=−∫u10du
-
The integral of un is n+1un+1 when n=−1:
∫u10du=11u11
So, the result is: −11u11
Now substitute u back in:
−11cos11(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin(x)cos8(x))dx=−2∫sin(x)cos8(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u8)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u8du=−∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
So, the result is: −9u9
Now substitute u back in:
−9cos9(x)
So, the result is: 92cos9(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u6)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u6du=−∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −7u7
Now substitute u back in:
−7cos7(x)
The result is: −11cos11(x)+92cos9(x)−7cos7(x)
So, the result is: −111024cos11(x)+92048cos9(x)−71024cos7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−1280sin5(x)cos4(x))dx=−1280∫sin5(x)cos4(x)dx
-
Rewrite the integrand:
sin5(x)cos4(x)=(1−cos2(x))2sin(x)cos4(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(−u8+2u6−u4)du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u8)du=−∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
So, the result is: −9u9
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u6du=2∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: 72u7
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u4)du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
The result is: −9u9+72u7−5u5
Now substitute u back in:
−9cos9(x)+72cos7(x)−5cos5(x)
So, the result is: 91280cos9(x)−72560cos7(x)+256cos5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫320sin5(x)cos2(x)dx=320∫sin5(x)cos2(x)dx
-
Rewrite the integrand:
sin5(x)cos2(x)=(1−cos2(x))2sin(x)cos2(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(−u6+2u4−u2)du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u6)du=−∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −7u7
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u4du=2∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: 52u5
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
The result is: −7u7+52u5−3u3
Now substitute u back in:
−7cos7(x)+52cos5(x)−3cos3(x)
So, the result is: −7320cos7(x)+128cos5(x)−3320cos3(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−1024sin3(x)cos6(x))dx=−1024∫sin3(x)cos6(x)dx
-
Rewrite the integrand:
sin3(x)cos6(x)=(1−cos2(x))sin(x)cos6(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(u8−u6)du
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u6)du=−∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −7u7
The result is: 9u9−7u7
Now substitute u back in:
9cos9(x)−7cos7(x)
So, the result is: −91024cos9(x)+71024cos7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫1280sin3(x)cos4(x)dx=1280∫sin3(x)cos4(x)dx
-
Rewrite the integrand:
sin3(x)cos4(x)=(1−cos2(x))sin(x)cos4(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(u6−u4)du
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u4)du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
The result is: 7u7−5u5
Now substitute u back in:
7cos7(x)−5cos5(x)
So, the result is: 71280cos7(x)−256cos5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−320sin3(x)cos2(x))dx=−320∫sin3(x)cos2(x)dx
-
Rewrite the integrand:
sin3(x)cos2(x)=(1−cos2(x))sin(x)cos2(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫(u4−u2)du
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
The result is: 5u5−3u3
Now substitute u back in:
5cos5(x)−3cos3(x)
So, the result is: −64cos5(x)+3320cos3(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫192sin(x)cos6(x)dx=192∫sin(x)cos6(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u6)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u6du=−∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −7u7
Now substitute u back in:
−7cos7(x)
So, the result is: −7192cos7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−240sin(x)cos4(x))dx=−240∫sin(x)cos4(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u4)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u4du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
Now substitute u back in:
−5cos5(x)
So, the result is: 48cos5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫60sin(x)cos2(x)dx=60∫sin(x)cos2(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u2)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cos3(x)
So, the result is: −20cos3(x)
The result is: −111024cos11(x)+256cos9(x)−256cos7(x)+112cos5(x)−20cos3(x)
-
Now simplify:
(−111024cos8(x)+256cos6(x)−256cos4(x)+112cos2(x)−20)cos3(x)
-
Add the constant of integration:
(−111024cos8(x)+256cos6(x)−256cos4(x)+112cos2(x)−20)cos3(x)+constant
The answer is:
(−111024cos8(x)+256cos6(x)−256cos4(x)+112cos2(x)−20)cos3(x)+constant
The answer (Indefinite)
[src]
/ 11
| 7 3 5 9 1024*cos (x)
| 2*sin(6*x)*cos(5*x) dx = C - 256*cos (x) - 20*cos (x) + 112*cos (x) + 256*cos (x) - -------------
| 11
/
∫2sin(6x)cos(5x)dx=C−111024cos11(x)+256cos9(x)−256cos7(x)+112cos5(x)−20cos3(x)
The graph
12 12*cos(5)*cos(6) 10*sin(5)*sin(6)
-- - ---------------- - ----------------
11 11 11
−1112cos(5)cos(6)−1110sin(5)sin(6)+1112
=
12 12*cos(5)*cos(6) 10*sin(5)*sin(6)
-- - ---------------- - ----------------
11 11 11
−1112cos(5)cos(6)−1110sin(5)sin(6)+1112
12/11 - 12*cos(5)*cos(6)/11 - 10*sin(5)*sin(6)/11
Use the examples entering the upper and lower limits of integration.