Integral of sen^4xcos^5x dx
The solution
Detail solution
-
Rewrite the integrand:
sin4(x)cos5(x)=(1−sin2(x))2sin4(x)cos(x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫(u8−2u6+u4)du
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u6)du=−2∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −72u7
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
The result is: 9u9−72u7+5u5
Now substitute u back in:
9sin9(x)−72sin7(x)+5sin5(x)
Method #2
-
Rewrite the integrand:
(1−sin2(x))2sin4(x)cos(x)=sin8(x)cos(x)−2sin6(x)cos(x)+sin4(x)cos(x)
-
Integrate term-by-term:
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
Now substitute u back in:
9sin9(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin6(x)cos(x))dx=−2∫sin6(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
Now substitute u back in:
7sin7(x)
So, the result is: −72sin7(x)
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
The result is: 9sin9(x)−72sin7(x)+5sin5(x)
Method #3
-
Rewrite the integrand:
(1−sin2(x))2sin4(x)cos(x)=sin8(x)cos(x)−2sin6(x)cos(x)+sin4(x)cos(x)
-
Integrate term-by-term:
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
Now substitute u back in:
9sin9(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin6(x)cos(x))dx=−2∫sin6(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
Now substitute u back in:
7sin7(x)
So, the result is: −72sin7(x)
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
The result is: 9sin9(x)−72sin7(x)+5sin5(x)
-
Now simplify:
315(35sin4(x)−90sin2(x)+63)sin5(x)
-
Add the constant of integration:
315(35sin4(x)−90sin2(x)+63)sin5(x)+constant
The answer is:
315(35sin4(x)−90sin2(x)+63)sin5(x)+constant
The answer (Indefinite)
[src]
/
| 7 5 9
| 4 5 2*sin (x) sin (x) sin (x)
| sin (x)*cos (x) dx = C - --------- + ------- + -------
| 7 5 9
/
∫sin4(x)cos5(x)dx=C+9sin9(x)−72sin7(x)+5sin5(x)
The graph
Use the examples entering the upper and lower limits of integration.