Mister Exam

Integral of cos6x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  cos(6*x) dx
 |             
/              
0              
01cos(6x)dx\int\limits_{0}^{1} \cos{\left(6 x \right)}\, dx
Integral(cos(6*x), (x, 0, 1))
Detail solution
  1. Let u=6xu = 6 x.

    Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

    cos(u)36du\int \frac{\cos{\left(u \right)}}{36}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      cos(u)6du=cos(u)du6\int \frac{\cos{\left(u \right)}}{6}\, du = \frac{\int \cos{\left(u \right)}\, du}{6}

      1. The integral of cosine is sine:

        cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

      So, the result is: sin(u)6\frac{\sin{\left(u \right)}}{6}

    Now substitute uu back in:

    sin(6x)6\frac{\sin{\left(6 x \right)}}{6}

  2. Add the constant of integration:

    sin(6x)6+constant\frac{\sin{\left(6 x \right)}}{6}+ \mathrm{constant}


The answer is:

sin(6x)6+constant\frac{\sin{\left(6 x \right)}}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                   sin(6*x)
 | cos(6*x) dx = C + --------
 |                      6    
/                            
sin(6x)6{{\sin \left(6\,x\right)}\over{6}}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
sin(6)
------
  6   
sin66{{\sin 6}\over{6}}
=
=
sin(6)
------
  6   
sin(6)6\frac{\sin{\left(6 \right)}}{6}
Numerical answer [src]
-0.046569249699821
-0.046569249699821
The graph
Integral of cos6x dx

    Use the examples entering the upper and lower limits of integration.