1 / | | x | a dx | / 0
Integral(a^x, (x, 0, 1))
PiecewiseRule(subfunctions=[(ExpRule(base=a, exp=x, context=a**x, symbol=x), Ne(log(a), 0)), (ConstantRule(constant=1, context=1, symbol=x), True)], context=a**x, symbol=x)
Add the constant of integration:
The answer is:
/ // x \ | || a | | x ||------ for log(a) != 0| | a dx = C + |
/ 1 a |- ------ + ------ for Or(And(a >= 0, a < 1), a > 1) < log(a) log(a) | \ 1 otherwise
=
/ 1 a |- ------ + ------ for Or(And(a >= 0, a < 1), a > 1) < log(a) log(a) | \ 1 otherwise
Piecewise((-1/log(a) + a/log(a), (a > 1)∨((a >= 0)∧(a < 1))), (1, True))
Use the examples entering the upper and lower limits of integration.