Mister Exam

Integral of a^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1      
  /      
 |       
 |   x   
 |  a  dx
 |       
/        
0        
$$\int\limits_{0}^{1} a^{x}\, dx$$
Integral(a^x, (x, 0, 1))
Detail solution

    PiecewiseRule(subfunctions=[(ExpRule(base=a, exp=x, context=a**x, symbol=x), Ne(log(a), 0)), (ConstantRule(constant=1, context=1, symbol=x), True)], context=a**x, symbol=x)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /            //   x                   \
 |             ||  a                    |
 |  x          ||------  for log(a) != 0|
 | a  dx = C + |
            
$$\int a^{x}\, dx = C + \begin{cases} \frac{a^{x}}{\log{\left(a \right)}} & \text{for}\: \log{\left(a \right)} \neq 0 \\x & \text{otherwise} \end{cases}$$
The answer [src]
/    1        a                                      
|- ------ + ------  for Or(And(a >= 0, a < 1), a > 1)
<  log(a)   log(a)                                   
|                                                    
\        1                      otherwise            
$$\begin{cases} \frac{a}{\log{\left(a \right)}} - \frac{1}{\log{\left(a \right)}} & \text{for}\: \left(a \geq 0 \wedge a < 1\right) \vee a > 1 \\1 & \text{otherwise} \end{cases}$$
=
=
/    1        a                                      
|- ------ + ------  for Or(And(a >= 0, a < 1), a > 1)
<  log(a)   log(a)                                   
|                                                    
\        1                      otherwise            
$$\begin{cases} \frac{a}{\log{\left(a \right)}} - \frac{1}{\log{\left(a \right)}} & \text{for}\: \left(a \geq 0 \wedge a < 1\right) \vee a > 1 \\1 & \text{otherwise} \end{cases}$$
Piecewise((-1/log(a) + a/log(a), (a > 1)∨((a >= 0)∧(a < 1))), (1, True))

    Use the examples entering the upper and lower limits of integration.