Integral of sec^3(x) dx
The solution
The answer (Indefinite)
[src]
/
|
| 3 log(-1 + sin(x)) log(1 + sin(x)) sin(x)
| sec (x) dx = C - ---------------- + --------------- - --------------
| 4 4 2
/ -2 + 2*sin (x)
$$\int \sec^{3}{\left(x \right)}\, dx = C - \frac{\log{\left(\sin{\left(x \right)} - 1 \right)}}{4} + \frac{\log{\left(\sin{\left(x \right)} + 1 \right)}}{4} - \frac{\sin{\left(x \right)}}{2 \sin^{2}{\left(x \right)} - 2}$$
log(1 - sin(1)) log(1 + sin(1)) sin(1)
- --------------- + --------------- - --------------
4 4 2
-2 + 2*sin (1)
$$\frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{4} - \frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{4} - \frac{\sin{\left(1 \right)}}{-2 + 2 \sin^{2}{\left(1 \right)}}$$
=
log(1 - sin(1)) log(1 + sin(1)) sin(1)
- --------------- + --------------- - --------------
4 4 2
-2 + 2*sin (1)
$$\frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{4} - \frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{4} - \frac{\sin{\left(1 \right)}}{-2 + 2 \sin^{2}{\left(1 \right)}}$$
-log(1 - sin(1))/4 + log(1 + sin(1))/4 - sin(1)/(-2 + 2*sin(1)^2)
Use the examples entering the upper and lower limits of integration.