Mister Exam

Integral of arctg(x/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |      /x\   
 |  atan|-| dx
 |      \2/   
 |            
/             
0             
01atan(x2)dx\int\limits_{0}^{1} \operatorname{atan}{\left(\frac{x}{2} \right)}\, dx
Integral(atan(x/2), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=x2u = \frac{x}{2}.

      Then let du=dx2du = \frac{dx}{2} and substitute 2du2 du:

      2atan(u)du\int 2 \operatorname{atan}{\left(u \right)}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        atan(u)du=2atan(u)du\int \operatorname{atan}{\left(u \right)}\, du = 2 \int \operatorname{atan}{\left(u \right)}\, du

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=atan(u)u{\left(u \right)} = \operatorname{atan}{\left(u \right)} and let dv(u)=1\operatorname{dv}{\left(u \right)} = 1.

          Then du(u)=1u2+1\operatorname{du}{\left(u \right)} = \frac{1}{u^{2} + 1}.

          To find v(u)v{\left(u \right)}:

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          uu2+1du=2uu2+1du2\int \frac{u}{u^{2} + 1}\, du = \frac{\int \frac{2 u}{u^{2} + 1}\, du}{2}

          1. Let u=u2+1u = u^{2} + 1.

            Then let du=2ududu = 2 u du and substitute du2\frac{du}{2}:

            12udu\int \frac{1}{2 u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            Now substitute uu back in:

            log(u2+1)\log{\left(u^{2} + 1 \right)}

          So, the result is: log(u2+1)2\frac{\log{\left(u^{2} + 1 \right)}}{2}

        So, the result is: 2uatan(u)log(u2+1)2 u \operatorname{atan}{\left(u \right)} - \log{\left(u^{2} + 1 \right)}

      Now substitute uu back in:

      xatan(x2)log(x24+1)x \operatorname{atan}{\left(\frac{x}{2} \right)} - \log{\left(\frac{x^{2}}{4} + 1 \right)}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=atan(x2)u{\left(x \right)} = \operatorname{atan}{\left(\frac{x}{2} \right)} and let dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

      Then du(x)=12(x24+1)\operatorname{du}{\left(x \right)} = \frac{1}{2 \left(\frac{x^{2}}{4} + 1\right)}.

      To find v(x)v{\left(x \right)}:

      1. The integral of a constant is the constant times the variable of integration:

        1dx=x\int 1\, dx = x

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      x2(x24+1)dx=xx24+1dx2\int \frac{x}{2 \left(\frac{x^{2}}{4} + 1\right)}\, dx = \frac{\int \frac{x}{\frac{x^{2}}{4} + 1}\, dx}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        xx24+1dx=2x2(x24+1)dx\int \frac{x}{\frac{x^{2}}{4} + 1}\, dx = 2 \int \frac{x}{2 \left(\frac{x^{2}}{4} + 1\right)}\, dx

        1. Let u=x24+1u = \frac{x^{2}}{4} + 1.

          Then let du=xdx2du = \frac{x dx}{2} and substitute 2du2 du:

          2udu\int \frac{2}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x24+1)\log{\left(\frac{x^{2}}{4} + 1 \right)}

        So, the result is: 2log(x24+1)2 \log{\left(\frac{x^{2}}{4} + 1 \right)}

      So, the result is: log(x24+1)\log{\left(\frac{x^{2}}{4} + 1 \right)}

  2. Now simplify:

    xatan(x2)log(x24+1)x \operatorname{atan}{\left(\frac{x}{2} \right)} - \log{\left(\frac{x^{2}}{4} + 1 \right)}

  3. Add the constant of integration:

    xatan(x2)log(x24+1)+constantx \operatorname{atan}{\left(\frac{x}{2} \right)} - \log{\left(\frac{x^{2}}{4} + 1 \right)}+ \mathrm{constant}


The answer is:

xatan(x2)log(x24+1)+constantx \operatorname{atan}{\left(\frac{x}{2} \right)} - \log{\left(\frac{x^{2}}{4} + 1 \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                        
 |                     /     2\            
 |     /x\             |    x |         /x\
 | atan|-| dx = C - log|1 + --| + x*atan|-|
 |     \2/             \    4 /         \2/
 |                                         
/                                          
atan(x2)dx=C+xatan(x2)log(x24+1)\int \operatorname{atan}{\left(\frac{x}{2} \right)}\, dx = C + x \operatorname{atan}{\left(\frac{x}{2} \right)} - \log{\left(\frac{x^{2}}{4} + 1 \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
-log(5) + atan(1/2) + log(4)
log(5)+atan(12)+log(4)- \log{\left(5 \right)} + \operatorname{atan}{\left(\frac{1}{2} \right)} + \log{\left(4 \right)}
=
=
-log(5) + atan(1/2) + log(4)
log(5)+atan(12)+log(4)- \log{\left(5 \right)} + \operatorname{atan}{\left(\frac{1}{2} \right)} + \log{\left(4 \right)}
-log(5) + atan(1/2) + log(4)
Numerical answer [src]
0.240504057686596
0.240504057686596

    Use the examples entering the upper and lower limits of integration.