Mister Exam

Derivative of arctg(x/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /x\
atan|-|
    \2/
$$\operatorname{atan}{\left(\frac{x}{2} \right)}$$
d /    /x\\
--|atan|-||
dx\    \2//
$$\frac{d}{d x} \operatorname{atan}{\left(\frac{x}{2} \right)}$$
The graph
The first derivative [src]
    1     
----------
  /     2\
  |    x |
2*|1 + --|
  \    4 /
$$\frac{1}{2 \left(\frac{x^{2}}{4} + 1\right)}$$
The second derivative [src]
    -x     
-----------
          2
  /     2\ 
  |    x | 
4*|1 + --| 
  \    4 / 
$$- \frac{x}{4 \left(\frac{x^{2}}{4} + 1\right)^{2}}$$
The third derivative [src]
  /         2 \
  |      4*x  |
4*|-1 + ------|
  |          2|
  \     4 + x /
---------------
           2   
   /     2\    
   \4 + x /    
$$\frac{4 \cdot \left(\frac{4 x^{2}}{x^{2} + 4} - 1\right)}{\left(x^{2} + 4\right)^{2}}$$
The graph
Derivative of arctg(x/2)