Integral of (1/sqrt(x))*arctg(x/2+x) dx
The solution
The answer (Indefinite)
[src]
/
| / ___ ___\ / ___ ___\
| /x \ ___ |2 2*\/ 3 *\/ x | ___ |2 2*\/ 3 *\/ x |
| atan|- + x| ___ / ___ ___\ ___ / ___ ___\ \/ 3 *log|- + x - -------------| \/ 3 *log|- + x + -------------|
| \2 / ___ /x \ 2*\/ 3 *atan\1 + \/ 3 *\/ x / 2*\/ 3 *atan\-1 + \/ 3 *\/ x / \3 3 / \3 3 /
| ----------- dx = C + 2*\/ x *atan|- + x| - ----------------------------- - ------------------------------ - -------------------------------- + --------------------------------
| ___ \2 / 3 3 3 3
| \/ x
|
/
∫xatan(2x+x)dx=C+2xatan(2x+x)−33log(−323x+x+32)+33log(323x+x+32)−323atan(3x−1)−323atan(3x+1)
Use the examples entering the upper and lower limits of integration.