Mister Exam

Other calculators


e^x/(1+e^x)

Integral of e^x/(1+e^x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     x     
 |    E      
 |  ------ dx
 |       x   
 |  1 + E    
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{e^{x}}{e^{x} + 1}\, dx$$
Integral(E^x/(1 + E^x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Let .

        Then let and substitute :

        1. The integral of is .

        Now substitute back in:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of is .

      Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                           
 |                            
 |    x                       
 |   E                /     x\
 | ------ dx = C + log\1 + E /
 |      x                     
 | 1 + E                      
 |                            
/                             
$$\int \frac{e^{x}}{e^{x} + 1}\, dx = C + \log{\left(e^{x} + 1 \right)}$$
The graph
The answer [src]
-log(2) + log(1 + E)
$$- \log{\left(2 \right)} + \log{\left(1 + e \right)}$$
=
=
-log(2) + log(1 + E)
$$- \log{\left(2 \right)} + \log{\left(1 + e \right)}$$
-log(2) + log(1 + E)
Numerical answer [src]
0.620114506958278
0.620114506958278
The graph
Integral of e^x/(1+e^x) dx

    Use the examples entering the upper and lower limits of integration.