Mister Exam

Integral of x(arctgx/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  x*acot(x)   
 |  --------- dx
 |      2       
 |              
/               
0               
01xacot(x)2dx\int\limits_{0}^{1} \frac{x \operatorname{acot}{\left(x \right)}}{2}\, dx
Integral(x*acot(x)/2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    xacot(x)2dx=xacot(x)dx2\int \frac{x \operatorname{acot}{\left(x \right)}}{2}\, dx = \frac{\int x \operatorname{acot}{\left(x \right)}\, dx}{2}

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=acot(x)u{\left(x \right)} = \operatorname{acot}{\left(x \right)} and let dv(x)=x\operatorname{dv}{\left(x \right)} = x.

      Then du(x)=1x2+1\operatorname{du}{\left(x \right)} = - \frac{1}{x^{2} + 1}.

      To find v(x)v{\left(x \right)}:

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      (x22(x2+1))dx=x2x2+1dx2\int \left(- \frac{x^{2}}{2 \left(x^{2} + 1\right)}\right)\, dx = - \frac{\int \frac{x^{2}}{x^{2} + 1}\, dx}{2}

      1. Rewrite the integrand:

        x2x2+1=11x2+1\frac{x^{2}}{x^{2} + 1} = 1 - \frac{1}{x^{2} + 1}

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          1dx=x\int 1\, dx = x

        1. The integral of a constant times a function is the constant times the integral of the function:

          (1x2+1)dx=1x2+1dx\int \left(- \frac{1}{x^{2} + 1}\right)\, dx = - \int \frac{1}{x^{2} + 1}\, dx

          1. The integral of 1x2+1\frac{1}{x^{2} + 1} is atan(x)\operatorname{atan}{\left(x \right)}.

          So, the result is: atan(x)- \operatorname{atan}{\left(x \right)}

        The result is: xatan(x)x - \operatorname{atan}{\left(x \right)}

      So, the result is: x2+atan(x)2- \frac{x}{2} + \frac{\operatorname{atan}{\left(x \right)}}{2}

    So, the result is: x2acot(x)4+x4atan(x)4\frac{x^{2} \operatorname{acot}{\left(x \right)}}{4} + \frac{x}{4} - \frac{\operatorname{atan}{\left(x \right)}}{4}

  2. Add the constant of integration:

    x2acot(x)4+x4atan(x)4+constant\frac{x^{2} \operatorname{acot}{\left(x \right)}}{4} + \frac{x}{4} - \frac{\operatorname{atan}{\left(x \right)}}{4}+ \mathrm{constant}


The answer is:

x2acot(x)4+x4atan(x)4+constant\frac{x^{2} \operatorname{acot}{\left(x \right)}}{4} + \frac{x}{4} - \frac{\operatorname{atan}{\left(x \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                           
 |                                   2        
 | x*acot(x)          atan(x)   x   x *acot(x)
 | --------- dx = C - ------- + - + ----------
 |     2                 4      4       4     
 |                                            
/                                             
xarctanx2+x2arccot  x22{{{{x-\arctan x}\over{2}}+{{x^2\,{\rm arccot}\; x}\over{2}}}\over{2 }}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.01.0
The answer [src]
1/4
14{{1}\over{4}}
=
=
1/4
14\frac{1}{4}
Numerical answer [src]
0.25
0.25
The graph
Integral of x(arctgx/2) dx

    Use the examples entering the upper and lower limits of integration.