Mister Exam

Integral of 4xcosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0              
  /              
 |               
 |  4*x*cos(x) dx
 |               
/                
pi               
--               
4                
$$\int\limits_{\frac{\pi}{4}}^{0} 4 x \cos{\left(x \right)}\, dx$$
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of cosine is sine:

      Now evaluate the sub-integral.

    2. The integral of sine is negative cosine:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                          
 | 4*x*cos(x) dx = C + 4*cos(x) + 4*x*sin(x)
 |                                          
/                                           
$$4\,\left(x\,\sin x+\cos x\right)$$
The graph
The answer [src]
                   ___
        ___   pi*\/ 2 
4 - 2*\/ 2  - --------
                 2    
$$4\,\left(1-{{\sin \left({{\pi}\over{4}}\right)\,\pi+4\,\cos \left( {{\pi}\over{4}}\right)}\over{4}}\right)$$
=
=
                   ___
        ___   pi*\/ 2 
4 - 2*\/ 2  - --------
                 2    
$$- 2 \sqrt{2} - \frac{\sqrt{2} \pi}{2} + 4$$
Numerical answer [src]
-1.04986859382537
-1.04986859382537
The graph
Integral of 4xcosx dx

    Use the examples entering the upper and lower limits of integration.