Mister Exam

Integral of sh(2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |  sinh(2*x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} \sinh{\left(2 x \right)}\, dx$$
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

        HyperbolicRule(func='sinh', arg=_u, context=sinh(_u), symbol=_u)

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            
 |                    cosh(2*x)
 | sinh(2*x) dx = C + ---------
 |                        2    
/                              
$${{\cosh \left(2\,x\right)}\over{2}}$$
The graph
The answer [src]
  1   cosh(2)
- - + -------
  2      2   
$${{\cosh 2}\over{2}}-{{1}\over{2}}$$
=
=
  1   cosh(2)
- - + -------
  2      2   
$$- \frac{1}{2} + \frac{\cosh{\left(2 \right)}}{2}$$
Numerical answer [src]
1.38109784554182
1.38109784554182
The graph
Integral of sh(2x) dx

    Use the examples entering the upper and lower limits of integration.