Mister Exam

Other calculators


cosxsin^2x

Integral of cosxsin^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |            2      
 |  cos(x)*sin (x) dx
 |                   
/                    
0                    
01sin2(x)cos(x)dx\int\limits_{0}^{1} \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx
Detail solution
  1. Let u=sin(x)u = \sin{\left(x \right)}.

    Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

    u2du\int u^{2}\, du

    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

      u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

    Now substitute uu back in:

    sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

  2. Add the constant of integration:

    sin3(x)3+constant\frac{\sin^{3}{\left(x \right)}}{3}+ \mathrm{constant}


The answer is:

sin3(x)3+constant\frac{\sin^{3}{\left(x \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                            3   
 |           2             sin (x)
 | cos(x)*sin (x) dx = C + -------
 |                            3   
/                                 
sin3x3{{\sin ^3x}\over{3}}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.00.5
The answer [src]
   3   
sin (1)
-------
   3   
sin313{{\sin ^31}\over{3}}
=
=
   3   
sin (1)
-------
   3   
sin3(1)3\frac{\sin^{3}{\left(1 \right)}}{3}
Numerical answer [src]
0.198607745530319
0.198607745530319
The graph
Integral of cosxsin^2x dx

    Use the examples entering the upper and lower limits of integration.