Integral of cosxsin^2x dx
The solution
Detail solution
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
-
Add the constant of integration:
3sin3(x)+constant
The answer is:
3sin3(x)+constant
The answer (Indefinite)
[src]
/
| 3
| 2 sin (x)
| cos(x)*sin (x) dx = C + -------
| 3
/
3sin3x
The graph
3sin31
=
3sin3(1)
Use the examples entering the upper and lower limits of integration.