Mister Exam

Other calculators

Integral of sin(4*x)*cos(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 1.57075                  
    /                     
   |                      
   |    sin(4*x)*cos(x) dx
   |                      
  /                       
  0                       
$$\int\limits_{0}^{1.57075} \sin{\left(4 x \right)} \cos{\left(x \right)}\, dx$$
Integral(sin(4*x)*cos(x), (x, 0, 1.57075))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. There are multiple ways to do this integral.

        Method #1

        1. Let .

          Then let and substitute :

          1. Integrate term-by-term:

            1. The integral of is when :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            The result is:

          Now substitute back in:

        Method #2

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of is when :

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          The result is:

        Method #3

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of is when :

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          The result is:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                              5           3   
 |                          8*cos (x)   4*cos (x)
 | sin(4*x)*cos(x) dx = C - --------- + ---------
 |                              5           3    
/                                                
$$\int \sin{\left(4 x \right)} \cos{\left(x \right)}\, dx = C - \frac{8 \cos^{5}{\left(x \right)}}{5} + \frac{4 \cos^{3}{\left(x \right)}}{3}$$
The graph
The answer [src]
0.266666666666799
$$0.266666666666799$$
=
=
0.266666666666799
$$0.266666666666799$$
0.266666666666799
Numerical answer [src]
0.266666666666799
0.266666666666799

    Use the examples entering the upper and lower limits of integration.