Integral of sin^4(x)cos(x) dx
The solution
Detail solution
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
-
Add the constant of integration:
5sin5(x)+constant
The answer is:
5sin5(x)+constant
The answer (Indefinite)
[src]
/
| 5
| 4 sin (x)
| sin (x)*cos(x) dx = C + -------
| 5
/
∫sin4(x)cos(x)dx=C+5sin5(x)
The graph
___
1 9*\/ 3
- --- + -------
160 160
−1601+16093
=
___
1 9*\/ 3
- --- + -------
160 160
−1601+16093
Use the examples entering the upper and lower limits of integration.