Mister Exam

Integral of 2cos5x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  2*cos(5*x) dx
 |               
/                
0                
012cos(5x)dx\int\limits_{0}^{1} 2 \cos{\left(5 x \right)}\, dx
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    2cos(5x)dx=2cos(5x)dx\int 2 \cos{\left(5 x \right)}\, dx = 2 \int \cos{\left(5 x \right)}\, dx

    1. Let u=5xu = 5 x.

      Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

      cos(u)25du\int \frac{\cos{\left(u \right)}}{25}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)5du=cos(u)du5\int \frac{\cos{\left(u \right)}}{5}\, du = \frac{\int \cos{\left(u \right)}\, du}{5}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)5\frac{\sin{\left(u \right)}}{5}

      Now substitute uu back in:

      sin(5x)5\frac{\sin{\left(5 x \right)}}{5}

    So, the result is: 2sin(5x)5\frac{2 \sin{\left(5 x \right)}}{5}

  2. Add the constant of integration:

    2sin(5x)5+constant\frac{2 \sin{\left(5 x \right)}}{5}+ \mathrm{constant}


The answer is:

2sin(5x)5+constant\frac{2 \sin{\left(5 x \right)}}{5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                     2*sin(5*x)
 | 2*cos(5*x) dx = C + ----------
 |                         5     
/                                
2sin(5x)5{{2\,\sin \left(5\,x\right)}\over{5}}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
2*sin(5)
--------
   5    
2sin55{{2\,\sin 5}\over{5}}
=
=
2*sin(5)
--------
   5    
2sin(5)5\frac{2 \sin{\left(5 \right)}}{5}
Numerical answer [src]
-0.383569709865255
-0.383569709865255
The graph
Integral of 2cos5x dx

    Use the examples entering the upper and lower limits of integration.