Integral of (3*x-2)*cos(5*x) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(3x−2)cos(5x)=3xcos(5x)−2cos(5x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫3xcos(5x)dx=3∫xcos(5x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=cos(5x).
Then du(x)=1.
To find v(x):
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫5cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=5∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 5sin(u)
Now substitute u back in:
5sin(5x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫5sin(5x)dx=5∫sin(5x)dx
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫5sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=5∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −5cos(u)
Now substitute u back in:
−5cos(5x)
So, the result is: −25cos(5x)
So, the result is: 53xsin(5x)+253cos(5x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2cos(5x))dx=−2∫cos(5x)dx
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫5cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=5∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 5sin(u)
Now substitute u back in:
5sin(5x)
So, the result is: −52sin(5x)
The result is: 53xsin(5x)−52sin(5x)+253cos(5x)
Method #2
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=3x−2 and let dv(x)=cos(5x).
Then du(x)=3.
To find v(x):
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫5cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=5∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 5sin(u)
Now substitute u back in:
5sin(5x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫53sin(5x)dx=53∫sin(5x)dx
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫5sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=5∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −5cos(u)
Now substitute u back in:
−5cos(5x)
So, the result is: −253cos(5x)
Method #3
-
Rewrite the integrand:
(3x−2)cos(5x)=3xcos(5x)−2cos(5x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫3xcos(5x)dx=3∫xcos(5x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=cos(5x).
Then du(x)=1.
To find v(x):
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫5cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=5∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 5sin(u)
Now substitute u back in:
5sin(5x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫5sin(5x)dx=5∫sin(5x)dx
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫5sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=5∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −5cos(u)
Now substitute u back in:
−5cos(5x)
So, the result is: −25cos(5x)
So, the result is: 53xsin(5x)+253cos(5x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2cos(5x))dx=−2∫cos(5x)dx
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫5cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=5∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 5sin(u)
Now substitute u back in:
5sin(5x)
So, the result is: −52sin(5x)
The result is: 53xsin(5x)−52sin(5x)+253cos(5x)
-
Add the constant of integration:
53xsin(5x)−52sin(5x)+253cos(5x)+constant
The answer is:
53xsin(5x)−52sin(5x)+253cos(5x)+constant
The answer (Indefinite)
[src]
/
| 2*sin(5*x) 3*cos(5*x) 3*x*sin(5*x)
| (3*x - 2)*cos(5*x) dx = C - ---------- + ---------- + ------------
| 5 25 5
/
∫(3x−2)cos(5x)dx=C+53xsin(5x)−52sin(5x)+253cos(5x)
The graph
3 sin(5) 3*cos(5)
- -- + ------ + --------
25 5 25
5sin(5)−253+253cos(5)
=
3 sin(5) 3*cos(5)
- -- + ------ + --------
25 5 25
5sin(5)−253+253cos(5)
-3/25 + sin(5)/5 + 3*cos(5)/25
Use the examples entering the upper and lower limits of integration.