Mister Exam

Other calculators

Integral of (3*x-2)*cos(5*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  (3*x - 2)*cos(5*x) dx
 |                       
/                        
0                        
01(3x2)cos(5x)dx\int\limits_{0}^{1} \left(3 x - 2\right) \cos{\left(5 x \right)}\, dx
Integral((3*x - 2)*cos(5*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      (3x2)cos(5x)=3xcos(5x)2cos(5x)\left(3 x - 2\right) \cos{\left(5 x \right)} = 3 x \cos{\left(5 x \right)} - 2 \cos{\left(5 x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        3xcos(5x)dx=3xcos(5x)dx\int 3 x \cos{\left(5 x \right)}\, dx = 3 \int x \cos{\left(5 x \right)}\, dx

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=xu{\left(x \right)} = x and let dv(x)=cos(5x)\operatorname{dv}{\left(x \right)} = \cos{\left(5 x \right)}.

          Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

          To find v(x)v{\left(x \right)}:

          1. Let u=5xu = 5 x.

            Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

            cos(u)5du\int \frac{\cos{\left(u \right)}}{5}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)du=cos(u)du5\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{5}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)5\frac{\sin{\left(u \right)}}{5}

            Now substitute uu back in:

            sin(5x)5\frac{\sin{\left(5 x \right)}}{5}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          sin(5x)5dx=sin(5x)dx5\int \frac{\sin{\left(5 x \right)}}{5}\, dx = \frac{\int \sin{\left(5 x \right)}\, dx}{5}

          1. Let u=5xu = 5 x.

            Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

            sin(u)5du\int \frac{\sin{\left(u \right)}}{5}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              sin(u)du=sin(u)du5\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{5}

              1. The integral of sine is negative cosine:

                sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

              So, the result is: cos(u)5- \frac{\cos{\left(u \right)}}{5}

            Now substitute uu back in:

            cos(5x)5- \frac{\cos{\left(5 x \right)}}{5}

          So, the result is: cos(5x)25- \frac{\cos{\left(5 x \right)}}{25}

        So, the result is: 3xsin(5x)5+3cos(5x)25\frac{3 x \sin{\left(5 x \right)}}{5} + \frac{3 \cos{\left(5 x \right)}}{25}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2cos(5x))dx=2cos(5x)dx\int \left(- 2 \cos{\left(5 x \right)}\right)\, dx = - 2 \int \cos{\left(5 x \right)}\, dx

        1. Let u=5xu = 5 x.

          Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

          cos(u)5du\int \frac{\cos{\left(u \right)}}{5}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)du=cos(u)du5\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{5}

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: sin(u)5\frac{\sin{\left(u \right)}}{5}

          Now substitute uu back in:

          sin(5x)5\frac{\sin{\left(5 x \right)}}{5}

        So, the result is: 2sin(5x)5- \frac{2 \sin{\left(5 x \right)}}{5}

      The result is: 3xsin(5x)52sin(5x)5+3cos(5x)25\frac{3 x \sin{\left(5 x \right)}}{5} - \frac{2 \sin{\left(5 x \right)}}{5} + \frac{3 \cos{\left(5 x \right)}}{25}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=3x2u{\left(x \right)} = 3 x - 2 and let dv(x)=cos(5x)\operatorname{dv}{\left(x \right)} = \cos{\left(5 x \right)}.

      Then du(x)=3\operatorname{du}{\left(x \right)} = 3.

      To find v(x)v{\left(x \right)}:

      1. Let u=5xu = 5 x.

        Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

        cos(u)5du\int \frac{\cos{\left(u \right)}}{5}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(u)du=cos(u)du5\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{5}

          1. The integral of cosine is sine:

            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

          So, the result is: sin(u)5\frac{\sin{\left(u \right)}}{5}

        Now substitute uu back in:

        sin(5x)5\frac{\sin{\left(5 x \right)}}{5}

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      3sin(5x)5dx=3sin(5x)dx5\int \frac{3 \sin{\left(5 x \right)}}{5}\, dx = \frac{3 \int \sin{\left(5 x \right)}\, dx}{5}

      1. Let u=5xu = 5 x.

        Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

        sin(u)5du\int \frac{\sin{\left(u \right)}}{5}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          sin(u)du=sin(u)du5\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{5}

          1. The integral of sine is negative cosine:

            sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

          So, the result is: cos(u)5- \frac{\cos{\left(u \right)}}{5}

        Now substitute uu back in:

        cos(5x)5- \frac{\cos{\left(5 x \right)}}{5}

      So, the result is: 3cos(5x)25- \frac{3 \cos{\left(5 x \right)}}{25}

    Method #3

    1. Rewrite the integrand:

      (3x2)cos(5x)=3xcos(5x)2cos(5x)\left(3 x - 2\right) \cos{\left(5 x \right)} = 3 x \cos{\left(5 x \right)} - 2 \cos{\left(5 x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        3xcos(5x)dx=3xcos(5x)dx\int 3 x \cos{\left(5 x \right)}\, dx = 3 \int x \cos{\left(5 x \right)}\, dx

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=xu{\left(x \right)} = x and let dv(x)=cos(5x)\operatorname{dv}{\left(x \right)} = \cos{\left(5 x \right)}.

          Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

          To find v(x)v{\left(x \right)}:

          1. Let u=5xu = 5 x.

            Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

            cos(u)5du\int \frac{\cos{\left(u \right)}}{5}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)du=cos(u)du5\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{5}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)5\frac{\sin{\left(u \right)}}{5}

            Now substitute uu back in:

            sin(5x)5\frac{\sin{\left(5 x \right)}}{5}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          sin(5x)5dx=sin(5x)dx5\int \frac{\sin{\left(5 x \right)}}{5}\, dx = \frac{\int \sin{\left(5 x \right)}\, dx}{5}

          1. Let u=5xu = 5 x.

            Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

            sin(u)5du\int \frac{\sin{\left(u \right)}}{5}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              sin(u)du=sin(u)du5\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{5}

              1. The integral of sine is negative cosine:

                sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

              So, the result is: cos(u)5- \frac{\cos{\left(u \right)}}{5}

            Now substitute uu back in:

            cos(5x)5- \frac{\cos{\left(5 x \right)}}{5}

          So, the result is: cos(5x)25- \frac{\cos{\left(5 x \right)}}{25}

        So, the result is: 3xsin(5x)5+3cos(5x)25\frac{3 x \sin{\left(5 x \right)}}{5} + \frac{3 \cos{\left(5 x \right)}}{25}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2cos(5x))dx=2cos(5x)dx\int \left(- 2 \cos{\left(5 x \right)}\right)\, dx = - 2 \int \cos{\left(5 x \right)}\, dx

        1. Let u=5xu = 5 x.

          Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

          cos(u)5du\int \frac{\cos{\left(u \right)}}{5}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)du=cos(u)du5\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{5}

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: sin(u)5\frac{\sin{\left(u \right)}}{5}

          Now substitute uu back in:

          sin(5x)5\frac{\sin{\left(5 x \right)}}{5}

        So, the result is: 2sin(5x)5- \frac{2 \sin{\left(5 x \right)}}{5}

      The result is: 3xsin(5x)52sin(5x)5+3cos(5x)25\frac{3 x \sin{\left(5 x \right)}}{5} - \frac{2 \sin{\left(5 x \right)}}{5} + \frac{3 \cos{\left(5 x \right)}}{25}

  2. Add the constant of integration:

    3xsin(5x)52sin(5x)5+3cos(5x)25+constant\frac{3 x \sin{\left(5 x \right)}}{5} - \frac{2 \sin{\left(5 x \right)}}{5} + \frac{3 \cos{\left(5 x \right)}}{25}+ \mathrm{constant}


The answer is:

3xsin(5x)52sin(5x)5+3cos(5x)25+constant\frac{3 x \sin{\left(5 x \right)}}{5} - \frac{2 \sin{\left(5 x \right)}}{5} + \frac{3 \cos{\left(5 x \right)}}{25}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                  
 |                             2*sin(5*x)   3*cos(5*x)   3*x*sin(5*x)
 | (3*x - 2)*cos(5*x) dx = C - ---------- + ---------- + ------------
 |                                 5            25            5      
/                                                                    
(3x2)cos(5x)dx=C+3xsin(5x)52sin(5x)5+3cos(5x)25\int \left(3 x - 2\right) \cos{\left(5 x \right)}\, dx = C + \frac{3 x \sin{\left(5 x \right)}}{5} - \frac{2 \sin{\left(5 x \right)}}{5} + \frac{3 \cos{\left(5 x \right)}}{25}
The graph
0.001.000.100.200.300.400.500.600.700.800.902.5-2.5
The answer [src]
  3    sin(5)   3*cos(5)
- -- + ------ + --------
  25     5         25   
sin(5)5325+3cos(5)25\frac{\sin{\left(5 \right)}}{5} - \frac{3}{25} + \frac{3 \cos{\left(5 \right)}}{25}
=
=
  3    sin(5)   3*cos(5)
- -- + ------ + --------
  25     5         25   
sin(5)5325+3cos(5)25\frac{\sin{\left(5 \right)}}{5} - \frac{3}{25} + \frac{3 \cos{\left(5 \right)}}{25}
-3/25 + sin(5)/5 + 3*cos(5)/25
Numerical answer [src]
-0.277745392677041
-0.277745392677041

    Use the examples entering the upper and lower limits of integration.