Mister Exam

Other calculators


x^2*cos5xdx

Integral of x^2*cos5xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |   2              
 |  x *cos(5*x)*1 dx
 |                  
/                   
0                   
01x2cos(5x)1dx\int\limits_{0}^{1} x^{2} \cos{\left(5 x \right)} 1\, dx
Integral(x^2*cos(5*x)*1, (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=x2u{\left(x \right)} = x^{2} and let dv(x)=cos(5x)\operatorname{dv}{\left(x \right)} = \cos{\left(5 x \right)}.

    Then du(x)=2x\operatorname{du}{\left(x \right)} = 2 x.

    To find v(x)v{\left(x \right)}:

    1. Let u=5xu = 5 x.

      Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

      cos(u)25du\int \frac{\cos{\left(u \right)}}{25}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)5du=cos(u)du5\int \frac{\cos{\left(u \right)}}{5}\, du = \frac{\int \cos{\left(u \right)}\, du}{5}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)5\frac{\sin{\left(u \right)}}{5}

      Now substitute uu back in:

      sin(5x)5\frac{\sin{\left(5 x \right)}}{5}

    Now evaluate the sub-integral.

  2. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=2x5u{\left(x \right)} = \frac{2 x}{5} and let dv(x)=sin(5x)\operatorname{dv}{\left(x \right)} = \sin{\left(5 x \right)}.

    Then du(x)=25\operatorname{du}{\left(x \right)} = \frac{2}{5}.

    To find v(x)v{\left(x \right)}:

    1. Let u=5xu = 5 x.

      Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

      sin(u)25du\int \frac{\sin{\left(u \right)}}{25}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)5du=sin(u)du5\int \frac{\sin{\left(u \right)}}{5}\, du = \frac{\int \sin{\left(u \right)}\, du}{5}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)5- \frac{\cos{\left(u \right)}}{5}

      Now substitute uu back in:

      cos(5x)5- \frac{\cos{\left(5 x \right)}}{5}

    Now evaluate the sub-integral.

  3. The integral of a constant times a function is the constant times the integral of the function:

    (2cos(5x)25)dx=2cos(5x)dx25\int \left(- \frac{2 \cos{\left(5 x \right)}}{25}\right)\, dx = - \frac{2 \int \cos{\left(5 x \right)}\, dx}{25}

    1. Let u=5xu = 5 x.

      Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

      cos(u)25du\int \frac{\cos{\left(u \right)}}{25}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)5du=cos(u)du5\int \frac{\cos{\left(u \right)}}{5}\, du = \frac{\int \cos{\left(u \right)}\, du}{5}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)5\frac{\sin{\left(u \right)}}{5}

      Now substitute uu back in:

      sin(5x)5\frac{\sin{\left(5 x \right)}}{5}

    So, the result is: 2sin(5x)125- \frac{2 \sin{\left(5 x \right)}}{125}

  4. Add the constant of integration:

    x2sin(5x)5+2xcos(5x)252sin(5x)125+constant\frac{x^{2} \sin{\left(5 x \right)}}{5} + \frac{2 x \cos{\left(5 x \right)}}{25} - \frac{2 \sin{\left(5 x \right)}}{125}+ \mathrm{constant}


The answer is:

x2sin(5x)5+2xcos(5x)252sin(5x)125+constant\frac{x^{2} \sin{\left(5 x \right)}}{5} + \frac{2 x \cos{\left(5 x \right)}}{25} - \frac{2 \sin{\left(5 x \right)}}{125}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                              
 |                                      2                        
 |  2                     2*sin(5*x)   x *sin(5*x)   2*x*cos(5*x)
 | x *cos(5*x)*1 dx = C - ---------- + ----------- + ------------
 |                           125            5             25     
/                                                                
(25x22)sin(5x)+10xcos(5x)125{{\left(25\,x^2-2\right)\,\sin \left(5\,x\right)+10\,x\,\cos \left( 5\,x\right)}\over{125}}
The graph
0.001.000.100.200.300.400.500.600.700.800.901.0-1.0
The answer [src]
2*cos(5)   23*sin(5)
-------- + ---------
   25         125   
23sin5+10cos5125{{23\,\sin 5+10\,\cos 5}\over{125}}
=
=
2*cos(5)   23*sin(5)
-------- + ---------
   25         125   
23sin(5)125+2cos(5)25\frac{23 \sin{\left(5 \right)}}{125} + \frac{2 \cos{\left(5 \right)}}{25}
Numerical answer [src]
-0.153749091700959
-0.153749091700959
The graph
Integral of x^2*cos5xdx dx

    Use the examples entering the upper and lower limits of integration.