Integral of x^2*cos5xdx dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x2 and let dv(x)=cos(5x).
Then du(x)=2x.
To find v(x):
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫25cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫5cos(u)du=5∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 5sin(u)
Now substitute u back in:
5sin(5x)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=52x and let dv(x)=sin(5x).
Then du(x)=52.
To find v(x):
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫25sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫5sin(u)du=5∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −5cos(u)
Now substitute u back in:
−5cos(5x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−252cos(5x))dx=−252∫cos(5x)dx
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫25cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫5cos(u)du=5∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 5sin(u)
Now substitute u back in:
5sin(5x)
So, the result is: −1252sin(5x)
-
Add the constant of integration:
5x2sin(5x)+252xcos(5x)−1252sin(5x)+constant
The answer is:
5x2sin(5x)+252xcos(5x)−1252sin(5x)+constant
The answer (Indefinite)
[src]
/
| 2
| 2 2*sin(5*x) x *sin(5*x) 2*x*cos(5*x)
| x *cos(5*x)*1 dx = C - ---------- + ----------- + ------------
| 125 5 25
/
125(25x2−2)sin(5x)+10xcos(5x)
The graph
2*cos(5) 23*sin(5)
-------- + ---------
25 125
12523sin5+10cos5
=
2*cos(5) 23*sin(5)
-------- + ---------
25 125
12523sin(5)+252cos(5)
Use the examples entering the upper and lower limits of integration.