Mister Exam

Other calculators


x^2*cos5xdx

Integral of x^2*cos5xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |   2              
 |  x *cos(5*x)*1 dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} x^{2} \cos{\left(5 x \right)} 1\, dx$$
Integral(x^2*cos(5*x)*1, (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  2. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  3. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                              
 |                                      2                        
 |  2                     2*sin(5*x)   x *sin(5*x)   2*x*cos(5*x)
 | x *cos(5*x)*1 dx = C - ---------- + ----------- + ------------
 |                           125            5             25     
/                                                                
$${{\left(25\,x^2-2\right)\,\sin \left(5\,x\right)+10\,x\,\cos \left( 5\,x\right)}\over{125}}$$
The graph
The answer [src]
2*cos(5)   23*sin(5)
-------- + ---------
   25         125   
$${{23\,\sin 5+10\,\cos 5}\over{125}}$$
=
=
2*cos(5)   23*sin(5)
-------- + ---------
   25         125   
$$\frac{23 \sin{\left(5 \right)}}{125} + \frac{2 \cos{\left(5 \right)}}{25}$$
Numerical answer [src]
-0.153749091700959
-0.153749091700959
The graph
Integral of x^2*cos5xdx dx

    Use the examples entering the upper and lower limits of integration.