Mister Exam

Integral of sin(5x)sin(2x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  sin(5*x)*sin(2*x)*1 dx
 |                        
/                         
0                         
01sin(5x)sin(2x)1dx\int\limits_{0}^{1} \sin{\left(5 x \right)} \sin{\left(2 x \right)} 1\, dx
Integral(sin(5*x)*sin(2*x)*1, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. The integral of a constant times a function is the constant times the integral of the function:

      2sin(x)sin(5x)cos(x)dx=2sin(x)sin(5x)cos(x)dx\int 2 \sin{\left(x \right)} \sin{\left(5 x \right)} \cos{\left(x \right)}\, dx = 2 \int \sin{\left(x \right)} \sin{\left(5 x \right)} \cos{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin(x)sin(5x)cos(x)=16sin6(x)cos(x)20sin4(x)cos(x)+5sin2(x)cos(x)\sin{\left(x \right)} \sin{\left(5 x \right)} \cos{\left(x \right)} = 16 \sin^{6}{\left(x \right)} \cos{\left(x \right)} - 20 \sin^{4}{\left(x \right)} \cos{\left(x \right)} + 5 \sin^{2}{\left(x \right)} \cos{\left(x \right)}

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          16sin6(x)cos(x)dx=16sin6(x)cos(x)dx\int 16 \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx = 16 \int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx

          1. Let u=sin(x)u = \sin{\left(x \right)}.

            Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

            u6du\int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            Now substitute uu back in:

            sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

          So, the result is: 16sin7(x)7\frac{16 \sin^{7}{\left(x \right)}}{7}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (20sin4(x)cos(x))dx=20sin4(x)cos(x)dx\int \left(- 20 \sin^{4}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 20 \int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx

          1. Let u=sin(x)u = \sin{\left(x \right)}.

            Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

            u4du\int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            Now substitute uu back in:

            sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

          So, the result is: 4sin5(x)- 4 \sin^{5}{\left(x \right)}

        1. The integral of a constant times a function is the constant times the integral of the function:

          5sin2(x)cos(x)dx=5sin2(x)cos(x)dx\int 5 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx = 5 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

          1. Let u=sin(x)u = \sin{\left(x \right)}.

            Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

            u2du\int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            Now substitute uu back in:

            sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

          So, the result is: 5sin3(x)3\frac{5 \sin^{3}{\left(x \right)}}{3}

        The result is: 16sin7(x)74sin5(x)+5sin3(x)3\frac{16 \sin^{7}{\left(x \right)}}{7} - 4 \sin^{5}{\left(x \right)} + \frac{5 \sin^{3}{\left(x \right)}}{3}

      So, the result is: 32sin7(x)78sin5(x)+10sin3(x)3\frac{32 \sin^{7}{\left(x \right)}}{7} - 8 \sin^{5}{\left(x \right)} + \frac{10 \sin^{3}{\left(x \right)}}{3}

    Method #2

    1. Rewrite the integrand:

      sin(5x)sin(2x)1=32sin6(x)cos(x)40sin4(x)cos(x)+10sin2(x)cos(x)\sin{\left(5 x \right)} \sin{\left(2 x \right)} 1 = 32 \sin^{6}{\left(x \right)} \cos{\left(x \right)} - 40 \sin^{4}{\left(x \right)} \cos{\left(x \right)} + 10 \sin^{2}{\left(x \right)} \cos{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        32sin6(x)cos(x)dx=32sin6(x)cos(x)dx\int 32 \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx = 32 \int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u6du\int u^{6}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

          Now substitute uu back in:

          sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

        So, the result is: 32sin7(x)7\frac{32 \sin^{7}{\left(x \right)}}{7}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (40sin4(x)cos(x))dx=40sin4(x)cos(x)dx\int \left(- 40 \sin^{4}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 40 \int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u4du\int u^{4}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          Now substitute uu back in:

          sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

        So, the result is: 8sin5(x)- 8 \sin^{5}{\left(x \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        10sin2(x)cos(x)dx=10sin2(x)cos(x)dx\int 10 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx = 10 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u2du\int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          Now substitute uu back in:

          sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

        So, the result is: 10sin3(x)3\frac{10 \sin^{3}{\left(x \right)}}{3}

      The result is: 32sin7(x)78sin5(x)+10sin3(x)3\frac{32 \sin^{7}{\left(x \right)}}{7} - 8 \sin^{5}{\left(x \right)} + \frac{10 \sin^{3}{\left(x \right)}}{3}

  2. Now simplify:

    2(48sin4(x)84sin2(x)+35)sin3(x)21\frac{2 \cdot \left(48 \sin^{4}{\left(x \right)} - 84 \sin^{2}{\left(x \right)} + 35\right) \sin^{3}{\left(x \right)}}{21}

  3. Add the constant of integration:

    2(48sin4(x)84sin2(x)+35)sin3(x)21+constant\frac{2 \cdot \left(48 \sin^{4}{\left(x \right)} - 84 \sin^{2}{\left(x \right)} + 35\right) \sin^{3}{\left(x \right)}}{21}+ \mathrm{constant}


The answer is:

2(48sin4(x)84sin2(x)+35)sin3(x)21+constant\frac{2 \cdot \left(48 \sin^{4}{\left(x \right)} - 84 \sin^{2}{\left(x \right)} + 35\right) \sin^{3}{\left(x \right)}}{21}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                               3            7   
 |                                   5      10*sin (x)   32*sin (x)
 | sin(5*x)*sin(2*x)*1 dx = C - 8*sin (x) + ---------- + ----------
 |                                              3            7     
/                                                                  
sin(3x)6sin(7x)14{{\sin \left(3\,x\right)}\over{6}}-{{\sin \left(7\,x\right)}\over{ 14}}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
  5*cos(5)*sin(2)   2*cos(2)*sin(5)
- --------------- + ---------------
         21                21      
3sin77sin342-{{3\,\sin 7-7\,\sin 3}\over{42}}
=
=
  5*cos(5)*sin(2)   2*cos(2)*sin(5)
- --------------- + ---------------
         21                21      
5sin(2)cos(5)21+2sin(5)cos(2)21- \frac{5 \sin{\left(2 \right)} \cos{\left(5 \right)}}{21} + \frac{2 \sin{\left(5 \right)} \cos{\left(2 \right)}}{21}
Numerical answer [src]
-0.023407612850888
-0.023407612850888
The graph
Integral of sin(5x)sin(2x)dx dx

    Use the examples entering the upper and lower limits of integration.