Integral of sin(5x)sin(2x)dx dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(x)sin(5x)cos(x)dx=2∫sin(x)sin(5x)cos(x)dx
-
Rewrite the integrand:
sin(x)sin(5x)cos(x)=16sin6(x)cos(x)−20sin4(x)cos(x)+5sin2(x)cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫16sin6(x)cos(x)dx=16∫sin6(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
Now substitute u back in:
7sin7(x)
So, the result is: 716sin7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−20sin4(x)cos(x))dx=−20∫sin4(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
So, the result is: −4sin5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫5sin2(x)cos(x)dx=5∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: 35sin3(x)
The result is: 716sin7(x)−4sin5(x)+35sin3(x)
So, the result is: 732sin7(x)−8sin5(x)+310sin3(x)
Method #2
-
Rewrite the integrand:
sin(5x)sin(2x)1=32sin6(x)cos(x)−40sin4(x)cos(x)+10sin2(x)cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫32sin6(x)cos(x)dx=32∫sin6(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
Now substitute u back in:
7sin7(x)
So, the result is: 732sin7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−40sin4(x)cos(x))dx=−40∫sin4(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
So, the result is: −8sin5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫10sin2(x)cos(x)dx=10∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: 310sin3(x)
The result is: 732sin7(x)−8sin5(x)+310sin3(x)
-
Now simplify:
212⋅(48sin4(x)−84sin2(x)+35)sin3(x)
-
Add the constant of integration:
212⋅(48sin4(x)−84sin2(x)+35)sin3(x)+constant
The answer is:
212⋅(48sin4(x)−84sin2(x)+35)sin3(x)+constant
The answer (Indefinite)
[src]
/ 3 7
| 5 10*sin (x) 32*sin (x)
| sin(5*x)*sin(2*x)*1 dx = C - 8*sin (x) + ---------- + ----------
| 3 7
/
6sin(3x)−14sin(7x)
The graph
5*cos(5)*sin(2) 2*cos(2)*sin(5)
- --------------- + ---------------
21 21
−423sin7−7sin3
=
5*cos(5)*sin(2) 2*cos(2)*sin(5)
- --------------- + ---------------
21 21
−215sin(2)cos(5)+212sin(5)cos(2)
Use the examples entering the upper and lower limits of integration.