Mister Exam

Derivative of 2cos5x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
2*cos(5*x)
$$2 \cos{\left(5 x \right)}$$
d             
--(2*cos(5*x))
dx            
$$\frac{d}{d x} 2 \cos{\left(5 x \right)}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    So, the result is:


The answer is:

The graph
The first derivative [src]
-10*sin(5*x)
$$- 10 \sin{\left(5 x \right)}$$
The second derivative [src]
-50*cos(5*x)
$$- 50 \cos{\left(5 x \right)}$$
The third derivative [src]
250*sin(5*x)
$$250 \sin{\left(5 x \right)}$$
The graph
Derivative of 2cos5x