Mister Exam

sin(t)<1 inequation

A inequation with variable

The solution

You have entered [src]
sin(t) < 1
$$\sin{\left(t \right)} < 1$$
sin(t) < 1
Detail solution
Given the inequality:
$$\sin{\left(t \right)} < 1$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(t \right)} = 1$$
Solve:
Given the equation
$$\sin{\left(t \right)} = 1$$
transform
$$\sin{\left(t \right)} - 1 = 0$$
$$\sin{\left(t \right)} - 1 = 0$$
Do replacement
$$w = \sin{\left(t \right)}$$
Move free summands (without w)
from left part to right part, we given:
$$w = 1$$
We get the answer: w = 1
do backward replacement
$$\sin{\left(t \right)} = w$$
substitute w:
$$x_{1} = 39.2699077336963$$
$$x_{2} = -77664.8827844698$$
$$x_{3} = 70.6858358251975$$
$$x_{4} = -98.9601681513438$$
$$x_{5} = -42.4115005850814$$
$$x_{6} = -92.6769837307794$$
$$x_{7} = 51.8362788867584$$
$$x_{8} = 39.2699085343272$$
$$x_{9} = 70.6858344802043$$
$$x_{10} = -42.4115013226904$$
$$x_{11} = -86.3937988139119$$
$$x_{12} = -23.5619450115115$$
$$x_{13} = 14.1371671100222$$
$$x_{14} = 58.1194636580315$$
$$x_{15} = -4.71238862219396$$
$$x_{16} = -61.2610562447228$$
$$x_{17} = -23.5619449492902$$
$$x_{18} = 76.9690196732095$$
$$x_{19} = 26.7035387715281$$
$$x_{20} = 1.57079582971902$$
$$x_{21} = 95.8185760629547$$
$$x_{22} = -67.5442420547782$$
$$x_{23} = -17.2787583315643$$
$$x_{24} = 95.8185764110282$$
$$x_{25} = -29.8451297624452$$
$$x_{26} = 51.8362789031518$$
$$x_{27} = 76.9690204681432$$
$$x_{28} = -42.4115017818136$$
$$x_{29} = -17.2787590920677$$
$$x_{30} = -48.6946865760795$$
$$x_{31} = -67.5442421706656$$
$$x_{32} = -54.9778709962906$$
$$x_{33} = -73.8274269047688$$
$$x_{34} = 83.2522056907544$$
$$x_{35} = 32.9867233134552$$
$$x_{36} = -36.1283160197768$$
$$x_{37} = 70.6858352127237$$
$$x_{38} = -17.2787598356363$$
$$x_{39} = 45.553093730794$$
$$x_{40} = -92.6769829355125$$
$$x_{41} = 45.5530922954328$$
$$x_{42} = 1.57079769954017$$
$$x_{43} = 64.4026493072124$$
$$x_{44} = -36.1283153448593$$
$$x_{45} = 20.420352160156$$
$$x_{46} = -61.2610555612794$$
$$x_{47} = -10.9955746401247$$
$$x_{48} = 3017.49974516717$$
$$x_{49} = 20.4203527610188$$
$$x_{50} = -48.6946857788076$$
$$x_{51} = -86.3937984749131$$
$$x_{52} = -36.1283154173375$$
$$x_{53} = 26.7035380604159$$
$$x_{54} = 51.8362782775539$$
$$x_{55} = 1.57079525114023$$
$$x_{56} = 89.535390888605$$
$$x_{57} = 58.119464520069$$
$$x_{58} = 45.5530929823099$$
$$x_{59} = 95.8185754266891$$
$$x_{60} = 7.85398177249874$$
$$x_{61} = -54.9778717966574$$
$$x_{62} = -4.71238942125338$$
$$x_{63} = 7.85398174307326$$
$$x_{64} = 14.1371673791846$$
$$x_{65} = 1.57079657289894$$
$$x_{66} = -67.5442415371049$$
$$x_{67} = -29.8451306226524$$
$$x_{68} = -29.8451300954883$$
$$x_{69} = 20.4203521477756$$
$$x_{70} = 89.5353901350773$$
$$x_{71} = 58.1194643979608$$
$$x_{72} = 95.8185759975842$$
$$x_{73} = 83.252204888767$$
$$x_{74} = -10.9955738413568$$
$$x_{75} = 26.703537322248$$
$$x_{76} = 14.1371665172699$$
$$x_{77} = 32.9867225164981$$
$$x_{78} = 89.5353893728458$$
$$x_{79} = -86.3937977431483$$
$$x_{80} = -80.1106125781572$$
$$x_{81} = -73.8274277616689$$
$$x_{82} = -98.9601689530982$$
$$x_{83} = -23.5619443878998$$
$$x_{84} = 102.101760799573$$
$$x_{85} = 7.85398112872719$$
$$x_{86} = -61.2610569934486$$
$$x_{87} = 64.4026499096387$$
$$x_{88} = -73.8274272798455$$
$$x_{89} = -80.1106124650157$$
$$x_{90} = -80.1106131679426$$
$$x_{91} = 64.4026492731727$$
$$x_{1} = 39.2699077336963$$
$$x_{2} = -77664.8827844698$$
$$x_{3} = 70.6858358251975$$
$$x_{4} = -98.9601681513438$$
$$x_{5} = -42.4115005850814$$
$$x_{6} = -92.6769837307794$$
$$x_{7} = 51.8362788867584$$
$$x_{8} = 39.2699085343272$$
$$x_{9} = 70.6858344802043$$
$$x_{10} = -42.4115013226904$$
$$x_{11} = -86.3937988139119$$
$$x_{12} = -23.5619450115115$$
$$x_{13} = 14.1371671100222$$
$$x_{14} = 58.1194636580315$$
$$x_{15} = -4.71238862219396$$
$$x_{16} = -61.2610562447228$$
$$x_{17} = -23.5619449492902$$
$$x_{18} = 76.9690196732095$$
$$x_{19} = 26.7035387715281$$
$$x_{20} = 1.57079582971902$$
$$x_{21} = 95.8185760629547$$
$$x_{22} = -67.5442420547782$$
$$x_{23} = -17.2787583315643$$
$$x_{24} = 95.8185764110282$$
$$x_{25} = -29.8451297624452$$
$$x_{26} = 51.8362789031518$$
$$x_{27} = 76.9690204681432$$
$$x_{28} = -42.4115017818136$$
$$x_{29} = -17.2787590920677$$
$$x_{30} = -48.6946865760795$$
$$x_{31} = -67.5442421706656$$
$$x_{32} = -54.9778709962906$$
$$x_{33} = -73.8274269047688$$
$$x_{34} = 83.2522056907544$$
$$x_{35} = 32.9867233134552$$
$$x_{36} = -36.1283160197768$$
$$x_{37} = 70.6858352127237$$
$$x_{38} = -17.2787598356363$$
$$x_{39} = 45.553093730794$$
$$x_{40} = -92.6769829355125$$
$$x_{41} = 45.5530922954328$$
$$x_{42} = 1.57079769954017$$
$$x_{43} = 64.4026493072124$$
$$x_{44} = -36.1283153448593$$
$$x_{45} = 20.420352160156$$
$$x_{46} = -61.2610555612794$$
$$x_{47} = -10.9955746401247$$
$$x_{48} = 3017.49974516717$$
$$x_{49} = 20.4203527610188$$
$$x_{50} = -48.6946857788076$$
$$x_{51} = -86.3937984749131$$
$$x_{52} = -36.1283154173375$$
$$x_{53} = 26.7035380604159$$
$$x_{54} = 51.8362782775539$$
$$x_{55} = 1.57079525114023$$
$$x_{56} = 89.535390888605$$
$$x_{57} = 58.119464520069$$
$$x_{58} = 45.5530929823099$$
$$x_{59} = 95.8185754266891$$
$$x_{60} = 7.85398177249874$$
$$x_{61} = -54.9778717966574$$
$$x_{62} = -4.71238942125338$$
$$x_{63} = 7.85398174307326$$
$$x_{64} = 14.1371673791846$$
$$x_{65} = 1.57079657289894$$
$$x_{66} = -67.5442415371049$$
$$x_{67} = -29.8451306226524$$
$$x_{68} = -29.8451300954883$$
$$x_{69} = 20.4203521477756$$
$$x_{70} = 89.5353901350773$$
$$x_{71} = 58.1194643979608$$
$$x_{72} = 95.8185759975842$$
$$x_{73} = 83.252204888767$$
$$x_{74} = -10.9955738413568$$
$$x_{75} = 26.703537322248$$
$$x_{76} = 14.1371665172699$$
$$x_{77} = 32.9867225164981$$
$$x_{78} = 89.5353893728458$$
$$x_{79} = -86.3937977431483$$
$$x_{80} = -80.1106125781572$$
$$x_{81} = -73.8274277616689$$
$$x_{82} = -98.9601689530982$$
$$x_{83} = -23.5619443878998$$
$$x_{84} = 102.101760799573$$
$$x_{85} = 7.85398112872719$$
$$x_{86} = -61.2610569934486$$
$$x_{87} = 64.4026499096387$$
$$x_{88} = -73.8274272798455$$
$$x_{89} = -80.1106124650157$$
$$x_{90} = -80.1106131679426$$
$$x_{91} = 64.4026492731727$$
This roots
$$x_{2} = -77664.8827844698$$
$$x_{82} = -98.9601689530982$$
$$x_{4} = -98.9601681513438$$
$$x_{6} = -92.6769837307794$$
$$x_{40} = -92.6769829355125$$
$$x_{11} = -86.3937988139119$$
$$x_{51} = -86.3937984749131$$
$$x_{79} = -86.3937977431483$$
$$x_{90} = -80.1106131679426$$
$$x_{80} = -80.1106125781572$$
$$x_{89} = -80.1106124650157$$
$$x_{81} = -73.8274277616689$$
$$x_{88} = -73.8274272798455$$
$$x_{33} = -73.8274269047688$$
$$x_{31} = -67.5442421706656$$
$$x_{22} = -67.5442420547782$$
$$x_{66} = -67.5442415371049$$
$$x_{86} = -61.2610569934486$$
$$x_{16} = -61.2610562447228$$
$$x_{46} = -61.2610555612794$$
$$x_{61} = -54.9778717966574$$
$$x_{32} = -54.9778709962906$$
$$x_{30} = -48.6946865760795$$
$$x_{50} = -48.6946857788076$$
$$x_{28} = -42.4115017818136$$
$$x_{10} = -42.4115013226904$$
$$x_{5} = -42.4115005850814$$
$$x_{36} = -36.1283160197768$$
$$x_{52} = -36.1283154173375$$
$$x_{44} = -36.1283153448593$$
$$x_{67} = -29.8451306226524$$
$$x_{68} = -29.8451300954883$$
$$x_{25} = -29.8451297624452$$
$$x_{12} = -23.5619450115115$$
$$x_{17} = -23.5619449492902$$
$$x_{83} = -23.5619443878998$$
$$x_{38} = -17.2787598356363$$
$$x_{29} = -17.2787590920677$$
$$x_{23} = -17.2787583315643$$
$$x_{47} = -10.9955746401247$$
$$x_{74} = -10.9955738413568$$
$$x_{62} = -4.71238942125338$$
$$x_{15} = -4.71238862219396$$
$$x_{55} = 1.57079525114023$$
$$x_{20} = 1.57079582971902$$
$$x_{65} = 1.57079657289894$$
$$x_{42} = 1.57079769954017$$
$$x_{85} = 7.85398112872719$$
$$x_{63} = 7.85398174307326$$
$$x_{60} = 7.85398177249874$$
$$x_{76} = 14.1371665172699$$
$$x_{13} = 14.1371671100222$$
$$x_{64} = 14.1371673791846$$
$$x_{69} = 20.4203521477756$$
$$x_{45} = 20.420352160156$$
$$x_{49} = 20.4203527610188$$
$$x_{75} = 26.703537322248$$
$$x_{53} = 26.7035380604159$$
$$x_{19} = 26.7035387715281$$
$$x_{77} = 32.9867225164981$$
$$x_{35} = 32.9867233134552$$
$$x_{1} = 39.2699077336963$$
$$x_{8} = 39.2699085343272$$
$$x_{41} = 45.5530922954328$$
$$x_{58} = 45.5530929823099$$
$$x_{39} = 45.553093730794$$
$$x_{54} = 51.8362782775539$$
$$x_{7} = 51.8362788867584$$
$$x_{26} = 51.8362789031518$$
$$x_{14} = 58.1194636580315$$
$$x_{71} = 58.1194643979608$$
$$x_{57} = 58.119464520069$$
$$x_{91} = 64.4026492731727$$
$$x_{43} = 64.4026493072124$$
$$x_{87} = 64.4026499096387$$
$$x_{9} = 70.6858344802043$$
$$x_{37} = 70.6858352127237$$
$$x_{3} = 70.6858358251975$$
$$x_{18} = 76.9690196732095$$
$$x_{27} = 76.9690204681432$$
$$x_{73} = 83.252204888767$$
$$x_{34} = 83.2522056907544$$
$$x_{78} = 89.5353893728458$$
$$x_{70} = 89.5353901350773$$
$$x_{56} = 89.535390888605$$
$$x_{59} = 95.8185754266891$$
$$x_{72} = 95.8185759975842$$
$$x_{21} = 95.8185760629547$$
$$x_{24} = 95.8185764110282$$
$$x_{84} = 102.101760799573$$
$$x_{48} = 3017.49974516717$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$-77664.8827844698 + - \frac{1}{10}$$
=
$$-77664.9827844698$$
substitute to the expression
$$\sin{\left(t \right)} < 1$$
$$\sin{\left(t \right)} < 1$$
sin(t) < 1

Then
$$x < -77664.8827844698$$
no execute
one of the solutions of our inequality is:
$$x > -77664.8827844698 \wedge x < -98.9601689530982$$
         _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
        /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /
-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------
       x2      x82      x4      x6      x40      x11      x51      x79      x90      x80      x89      x81      x88      x33      x31      x22      x66      x86      x16      x46      x61      x32      x30      x50      x28      x10      x5      x36      x52      x44      x67      x68      x25      x12      x17      x83      x38      x29      x23      x47      x74      x62      x15      x55      x20      x65      x42      x85      x63      x60      x76      x13      x64      x69      x45      x49      x75      x53      x19      x77      x35      x1      x8      x41      x58      x39      x54      x7      x26      x14      x71      x57      x91      x43      x87      x9      x37      x3      x18      x27      x73      x34      x78      x70      x56      x59      x72      x21      x24      x84      x48

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x > -77664.8827844698 \wedge x < -98.9601689530982$$
$$x > -98.9601681513438 \wedge x < -92.6769837307794$$
$$x > -92.6769829355125 \wedge x < -86.3937988139119$$
$$x > -86.3937984749131 \wedge x < -86.3937977431483$$
$$x > -80.1106131679426 \wedge x < -80.1106125781572$$
$$x > -80.1106124650157 \wedge x < -73.8274277616689$$
$$x > -73.8274272798455 \wedge x < -73.8274269047688$$
$$x > -67.5442421706656 \wedge x < -67.5442420547782$$
$$x > -67.5442415371049 \wedge x < -61.2610569934486$$
$$x > -61.2610562447228 \wedge x < -61.2610555612794$$
$$x > -54.9778717966574 \wedge x < -54.9778709962906$$
$$x > -48.6946865760795 \wedge x < -48.6946857788076$$
$$x > -42.4115017818136 \wedge x < -42.4115013226904$$
$$x > -42.4115005850814 \wedge x < -36.1283160197768$$
$$x > -36.1283154173375 \wedge x < -36.1283153448593$$
$$x > -29.8451306226524 \wedge x < -29.8451300954883$$
$$x > -29.8451297624452 \wedge x < -23.5619450115115$$
$$x > -23.5619449492902 \wedge x < -23.5619443878998$$
$$x > -17.2787598356363 \wedge x < -17.2787590920677$$
$$x > -17.2787583315643 \wedge x < -10.9955746401247$$
$$x > -10.9955738413568 \wedge x < -4.71238942125338$$
$$x > -4.71238862219396 \wedge x < 1.57079525114023$$
$$x > 1.57079582971902 \wedge x < 1.57079657289894$$
$$x > 1.57079769954017 \wedge x < 7.85398112872719$$
$$x > 7.85398174307326 \wedge x < 7.85398177249874$$
$$x > 14.1371665172699 \wedge x < 14.1371671100222$$
$$x > 14.1371673791846 \wedge x < 20.4203521477756$$
$$x > 20.420352160156 \wedge x < 20.4203527610188$$
$$x > 26.703537322248 \wedge x < 26.7035380604159$$
$$x > 26.7035387715281 \wedge x < 32.9867225164981$$
$$x > 32.9867233134552 \wedge x < 39.2699077336963$$
$$x > 39.2699085343272 \wedge x < 45.5530922954328$$
$$x > 45.5530929823099 \wedge x < 45.553093730794$$
$$x > 51.8362782775539 \wedge x < 51.8362788867584$$
$$x > 51.8362789031518 \wedge x < 58.1194636580315$$
$$x > 58.1194643979608 \wedge x < 58.119464520069$$
$$x > 64.4026492731727 \wedge x < 64.4026493072124$$
$$x > 64.4026499096387 \wedge x < 70.6858344802043$$
$$x > 70.6858352127237 \wedge x < 70.6858358251975$$
$$x > 76.9690196732095 \wedge x < 76.9690204681432$$
$$x > 83.252204888767 \wedge x < 83.2522056907544$$
$$x > 89.5353893728458 \wedge x < 89.5353901350773$$
$$x > 89.535390888605 \wedge x < 95.8185754266891$$
$$x > 95.8185759975842 \wedge x < 95.8185760629547$$
$$x > 95.8185764110282 \wedge x < 102.101760799573$$
$$x > 3017.49974516717$$
Rapid solution 2 [src]
    pi     pi       
[0, --) U (--, 2*pi]
    2      2        
$$x\ in\ \left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, 2 \pi\right]$$
x in Union(Interval.Ropen(0, pi/2), Interval.Lopen(pi/2, 2*pi))
Rapid solution [src]
  /   /            pi\     /           pi    \\
Or|And|0 <= t, t < --|, And|t <= 2*pi, -- < t||
  \   \            2 /     \           2     //
$$\left(0 \leq t \wedge t < \frac{\pi}{2}\right) \vee \left(t \leq 2 \pi \wedge \frac{\pi}{2} < t\right)$$
((0 <= t)∧(t < pi/2))∨((t <= 2*pi)∧(pi/2 < t))