Mister Exam

sint<1\3 inequation

A inequation with variable

The solution

You have entered [src]
sin(t) < 1/3
sin(t)<13\sin{\left(t \right)} < \frac{1}{3}
sin(t) < 1/3
Detail solution
Given the inequality:
sin(t)<13\sin{\left(t \right)} < \frac{1}{3}
To solve this inequality, we must first solve the corresponding equation:
sin(t)=13\sin{\left(t \right)} = \frac{1}{3}
Solve:
Given the equation
sin(t)=13\sin{\left(t \right)} = \frac{1}{3}
transform
sin(t)13=0\sin{\left(t \right)} - \frac{1}{3} = 0
sin(t)13=0\sin{\left(t \right)} - \frac{1}{3} = 0
Do replacement
w=sin(t)w = \sin{\left(t \right)}
Move free summands (without w)
from left part to right part, we given:
w=13w = \frac{1}{3}
We get the answer: w = 1/3
do backward replacement
sin(t)=w\sin{\left(t \right)} = w
substitute w:
x1=94.5876165171479x_{1} = 94.5876165171479
x2=21.6513116656744x_{2} = 21.6513116656744
x3=44.3221340597112x_{3} = 44.3221340597112
x4=56.2088308551622x_{4} = -56.2088308551622
x5=5.94334839772546x_{5} = -5.94334839772546
x6=172.447759037984x_{6} = 172.447759037984
x7=78.1999794302907x_{7} = 78.1999794302907
x8=100.870801824328x_{8} = 100.870801824328
x9=43.642460240803x_{9} = -43.642460240803
x10=69.4548752884296x_{10} = 69.4548752884296
x11=24.7929043192642x_{11} = -24.7929043192642
x12=63.17168998125x_{12} = 63.17168998125
x13=19.1893928309929x_{13} = 19.1893928309929
x14=53.0672382015724x_{14} = 53.0672382015724
x15=84.4831647374703x_{15} = 84.4831647374703
x16=18.5097190120846x_{16} = -18.5097190120846
x17=53.7469120204806x_{17} = -53.7469120204806
x18=9.7646148702235x_{18} = -9.7646148702235
x19=90.7663500446499x_{19} = 90.7663500446499
x20=112585.595763607x_{20} = -112585.595763607
x21=75.7380605956092x_{21} = 75.7380605956092
x22=65.6336088159315x_{22} = 65.6336088159315
x23=27.934496972854x_{23} = 27.934496972854
x24=34.8973560989418x_{24} = -34.8973560989418
x25=12.2265337049051x_{25} = -12.2265337049051
x26=60.0300973276602x_{26} = -60.0300973276602
x27=46.7840528943928x_{27} = 46.7840528943928
x28=59.350423508752x_{28} = 59.350423508752
x29=40.5008675872132x_{29} = 40.5008675872132
x30=41.1805414061214x_{30} = -41.1805414061214
x31=87.6247573910601x_{31} = -87.6247573910601
x32=47.463726713301x_{32} = -47.463726713301
x33=72.5964679420194x_{33} = -72.5964679420194
x34=68.7752014695213x_{34} = -68.7752014695213
x35=100.191128005419x_{35} = -100.191128005419
x36=116.578765092276x_{36} = -116.578765092276
x37=49.9256455479826x_{37} = -49.9256455479826
x38=78.879653249199x_{38} = -78.879653249199
x39=97.0495353518295x_{39} = 97.0495353518295
x40=6.62302221663371x_{40} = 6.62302221663371
x41=9.08494105131526x_{41} = 9.08494105131526
x42=38.0389487525316x_{42} = 38.0389487525316
x43=66.3132826348398x_{43} = -66.3132826348398
x44=37.3592749336234x_{44} = -37.3592749336234
x45=34.2176822800336x_{45} = 34.2176822800336
x46=12.9062075238133x_{46} = 12.9062075238133
x47=3.48142956304392x_{47} = -3.48142956304392
x48=75.0583867767009x_{48} = -75.0583867767009
x49=85.1628385563785x_{49} = -85.1628385563785
x50=22.3309854845827x_{50} = -22.3309854845827
x51=2.80175574413567x_{51} = 2.80175574413567
x52=97.7292091707377x_{52} = -97.7292091707377
x53=951.562737128253x_{53} = 951.562737128253
x54=81.3415720838805x_{54} = -81.3415720838805
x55=25.4725781381725x_{55} = 25.4725781381725
x56=28.6141707917623x_{56} = -28.6141707917623
x57=31.0760896264438x_{57} = -31.0760896264438
x58=93.9079426982397x_{58} = -93.9079426982397
x59=50.6053193668908x_{59} = 50.6053193668908
x60=15.3681263584948x_{60} = 15.3681263584948
x61=91.4460238635581x_{61} = -91.4460238635581
x62=0.339836909454122x_{62} = 0.339836909454122
x63=71.9167941231111x_{63} = 71.9167941231111
x64=88.3044312099683x_{64} = 88.3044312099683
x65=31.7557634453521x_{65} = 31.7557634453521
x66=82.0212459027887x_{66} = 82.0212459027887
x67=56.8885046740704x_{67} = 56.8885046740704
x68=16.0478001774031x_{68} = -16.0478001774031
x69=62.4920161623417x_{69} = -62.4920161623417
x1=94.5876165171479x_{1} = 94.5876165171479
x2=21.6513116656744x_{2} = 21.6513116656744
x3=44.3221340597112x_{3} = 44.3221340597112
x4=56.2088308551622x_{4} = -56.2088308551622
x5=5.94334839772546x_{5} = -5.94334839772546
x6=172.447759037984x_{6} = 172.447759037984
x7=78.1999794302907x_{7} = 78.1999794302907
x8=100.870801824328x_{8} = 100.870801824328
x9=43.642460240803x_{9} = -43.642460240803
x10=69.4548752884296x_{10} = 69.4548752884296
x11=24.7929043192642x_{11} = -24.7929043192642
x12=63.17168998125x_{12} = 63.17168998125
x13=19.1893928309929x_{13} = 19.1893928309929
x14=53.0672382015724x_{14} = 53.0672382015724
x15=84.4831647374703x_{15} = 84.4831647374703
x16=18.5097190120846x_{16} = -18.5097190120846
x17=53.7469120204806x_{17} = -53.7469120204806
x18=9.7646148702235x_{18} = -9.7646148702235
x19=90.7663500446499x_{19} = 90.7663500446499
x20=112585.595763607x_{20} = -112585.595763607
x21=75.7380605956092x_{21} = 75.7380605956092
x22=65.6336088159315x_{22} = 65.6336088159315
x23=27.934496972854x_{23} = 27.934496972854
x24=34.8973560989418x_{24} = -34.8973560989418
x25=12.2265337049051x_{25} = -12.2265337049051
x26=60.0300973276602x_{26} = -60.0300973276602
x27=46.7840528943928x_{27} = 46.7840528943928
x28=59.350423508752x_{28} = 59.350423508752
x29=40.5008675872132x_{29} = 40.5008675872132
x30=41.1805414061214x_{30} = -41.1805414061214
x31=87.6247573910601x_{31} = -87.6247573910601
x32=47.463726713301x_{32} = -47.463726713301
x33=72.5964679420194x_{33} = -72.5964679420194
x34=68.7752014695213x_{34} = -68.7752014695213
x35=100.191128005419x_{35} = -100.191128005419
x36=116.578765092276x_{36} = -116.578765092276
x37=49.9256455479826x_{37} = -49.9256455479826
x38=78.879653249199x_{38} = -78.879653249199
x39=97.0495353518295x_{39} = 97.0495353518295
x40=6.62302221663371x_{40} = 6.62302221663371
x41=9.08494105131526x_{41} = 9.08494105131526
x42=38.0389487525316x_{42} = 38.0389487525316
x43=66.3132826348398x_{43} = -66.3132826348398
x44=37.3592749336234x_{44} = -37.3592749336234
x45=34.2176822800336x_{45} = 34.2176822800336
x46=12.9062075238133x_{46} = 12.9062075238133
x47=3.48142956304392x_{47} = -3.48142956304392
x48=75.0583867767009x_{48} = -75.0583867767009
x49=85.1628385563785x_{49} = -85.1628385563785
x50=22.3309854845827x_{50} = -22.3309854845827
x51=2.80175574413567x_{51} = 2.80175574413567
x52=97.7292091707377x_{52} = -97.7292091707377
x53=951.562737128253x_{53} = 951.562737128253
x54=81.3415720838805x_{54} = -81.3415720838805
x55=25.4725781381725x_{55} = 25.4725781381725
x56=28.6141707917623x_{56} = -28.6141707917623
x57=31.0760896264438x_{57} = -31.0760896264438
x58=93.9079426982397x_{58} = -93.9079426982397
x59=50.6053193668908x_{59} = 50.6053193668908
x60=15.3681263584948x_{60} = 15.3681263584948
x61=91.4460238635581x_{61} = -91.4460238635581
x62=0.339836909454122x_{62} = 0.339836909454122
x63=71.9167941231111x_{63} = 71.9167941231111
x64=88.3044312099683x_{64} = 88.3044312099683
x65=31.7557634453521x_{65} = 31.7557634453521
x66=82.0212459027887x_{66} = 82.0212459027887
x67=56.8885046740704x_{67} = 56.8885046740704
x68=16.0478001774031x_{68} = -16.0478001774031
x69=62.4920161623417x_{69} = -62.4920161623417
This roots
x20=112585.595763607x_{20} = -112585.595763607
x36=116.578765092276x_{36} = -116.578765092276
x35=100.191128005419x_{35} = -100.191128005419
x52=97.7292091707377x_{52} = -97.7292091707377
x58=93.9079426982397x_{58} = -93.9079426982397
x61=91.4460238635581x_{61} = -91.4460238635581
x31=87.6247573910601x_{31} = -87.6247573910601
x49=85.1628385563785x_{49} = -85.1628385563785
x54=81.3415720838805x_{54} = -81.3415720838805
x38=78.879653249199x_{38} = -78.879653249199
x48=75.0583867767009x_{48} = -75.0583867767009
x33=72.5964679420194x_{33} = -72.5964679420194
x34=68.7752014695213x_{34} = -68.7752014695213
x43=66.3132826348398x_{43} = -66.3132826348398
x69=62.4920161623417x_{69} = -62.4920161623417
x26=60.0300973276602x_{26} = -60.0300973276602
x4=56.2088308551622x_{4} = -56.2088308551622
x17=53.7469120204806x_{17} = -53.7469120204806
x37=49.9256455479826x_{37} = -49.9256455479826
x32=47.463726713301x_{32} = -47.463726713301
x9=43.642460240803x_{9} = -43.642460240803
x30=41.1805414061214x_{30} = -41.1805414061214
x44=37.3592749336234x_{44} = -37.3592749336234
x24=34.8973560989418x_{24} = -34.8973560989418
x57=31.0760896264438x_{57} = -31.0760896264438
x56=28.6141707917623x_{56} = -28.6141707917623
x11=24.7929043192642x_{11} = -24.7929043192642
x50=22.3309854845827x_{50} = -22.3309854845827
x16=18.5097190120846x_{16} = -18.5097190120846
x68=16.0478001774031x_{68} = -16.0478001774031
x25=12.2265337049051x_{25} = -12.2265337049051
x18=9.7646148702235x_{18} = -9.7646148702235
x5=5.94334839772546x_{5} = -5.94334839772546
x47=3.48142956304392x_{47} = -3.48142956304392
x62=0.339836909454122x_{62} = 0.339836909454122
x51=2.80175574413567x_{51} = 2.80175574413567
x40=6.62302221663371x_{40} = 6.62302221663371
x41=9.08494105131526x_{41} = 9.08494105131526
x46=12.9062075238133x_{46} = 12.9062075238133
x60=15.3681263584948x_{60} = 15.3681263584948
x13=19.1893928309929x_{13} = 19.1893928309929
x2=21.6513116656744x_{2} = 21.6513116656744
x55=25.4725781381725x_{55} = 25.4725781381725
x23=27.934496972854x_{23} = 27.934496972854
x65=31.7557634453521x_{65} = 31.7557634453521
x45=34.2176822800336x_{45} = 34.2176822800336
x42=38.0389487525316x_{42} = 38.0389487525316
x29=40.5008675872132x_{29} = 40.5008675872132
x3=44.3221340597112x_{3} = 44.3221340597112
x27=46.7840528943928x_{27} = 46.7840528943928
x59=50.6053193668908x_{59} = 50.6053193668908
x14=53.0672382015724x_{14} = 53.0672382015724
x67=56.8885046740704x_{67} = 56.8885046740704
x28=59.350423508752x_{28} = 59.350423508752
x12=63.17168998125x_{12} = 63.17168998125
x22=65.6336088159315x_{22} = 65.6336088159315
x10=69.4548752884296x_{10} = 69.4548752884296
x63=71.9167941231111x_{63} = 71.9167941231111
x21=75.7380605956092x_{21} = 75.7380605956092
x7=78.1999794302907x_{7} = 78.1999794302907
x66=82.0212459027887x_{66} = 82.0212459027887
x15=84.4831647374703x_{15} = 84.4831647374703
x64=88.3044312099683x_{64} = 88.3044312099683
x19=90.7663500446499x_{19} = 90.7663500446499
x1=94.5876165171479x_{1} = 94.5876165171479
x39=97.0495353518295x_{39} = 97.0495353518295
x8=100.870801824328x_{8} = 100.870801824328
x6=172.447759037984x_{6} = 172.447759037984
x53=951.562737128253x_{53} = 951.562737128253
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x20x_{0} < x_{20}
For example, let's take the point
x0=x20110x_{0} = x_{20} - \frac{1}{10}
=
112585.595763607+110-112585.595763607 + - \frac{1}{10}
=
112585.695763607-112585.695763607
substitute to the expression
sin(t)<13\sin{\left(t \right)} < \frac{1}{3}
sin(t)<13\sin{\left(t \right)} < \frac{1}{3}
sin(t) < 1/3

Then
x<112585.595763607x < -112585.595763607
no execute
one of the solutions of our inequality is:
x>112585.595763607x<116.578765092276x > -112585.595763607 \wedge x < -116.578765092276
         _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
        /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /
-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------
       x20      x36      x35      x52      x58      x61      x31      x49      x54      x38      x48      x33      x34      x43      x69      x26      x4      x17      x37      x32      x9      x30      x44      x24      x57      x56      x11      x50      x16      x68      x25      x18      x5      x47      x62      x51      x40      x41      x46      x60      x13      x2      x55      x23      x65      x45      x42      x29      x3      x27      x59      x14      x67      x28      x12      x22      x10      x63      x21      x7      x66      x15      x64      x19      x1      x39      x8      x6      x53

Other solutions will get with the changeover to the next point
etc.
The answer:
x>112585.595763607x<116.578765092276x > -112585.595763607 \wedge x < -116.578765092276
x>100.191128005419x<97.7292091707377x > -100.191128005419 \wedge x < -97.7292091707377
x>93.9079426982397x<91.4460238635581x > -93.9079426982397 \wedge x < -91.4460238635581
x>87.6247573910601x<85.1628385563785x > -87.6247573910601 \wedge x < -85.1628385563785
x>81.3415720838805x<78.879653249199x > -81.3415720838805 \wedge x < -78.879653249199
x>75.0583867767009x<72.5964679420194x > -75.0583867767009 \wedge x < -72.5964679420194
x>68.7752014695213x<66.3132826348398x > -68.7752014695213 \wedge x < -66.3132826348398
x>62.4920161623417x<60.0300973276602x > -62.4920161623417 \wedge x < -60.0300973276602
x>56.2088308551622x<53.7469120204806x > -56.2088308551622 \wedge x < -53.7469120204806
x>49.9256455479826x<47.463726713301x > -49.9256455479826 \wedge x < -47.463726713301
x>43.642460240803x<41.1805414061214x > -43.642460240803 \wedge x < -41.1805414061214
x>37.3592749336234x<34.8973560989418x > -37.3592749336234 \wedge x < -34.8973560989418
x>31.0760896264438x<28.6141707917623x > -31.0760896264438 \wedge x < -28.6141707917623
x>24.7929043192642x<22.3309854845827x > -24.7929043192642 \wedge x < -22.3309854845827
x>18.5097190120846x<16.0478001774031x > -18.5097190120846 \wedge x < -16.0478001774031
x>12.2265337049051x<9.7646148702235x > -12.2265337049051 \wedge x < -9.7646148702235
x>5.94334839772546x<3.48142956304392x > -5.94334839772546 \wedge x < -3.48142956304392
x>0.339836909454122x<2.80175574413567x > 0.339836909454122 \wedge x < 2.80175574413567
x>6.62302221663371x<9.08494105131526x > 6.62302221663371 \wedge x < 9.08494105131526
x>12.9062075238133x<15.3681263584948x > 12.9062075238133 \wedge x < 15.3681263584948
x>19.1893928309929x<21.6513116656744x > 19.1893928309929 \wedge x < 21.6513116656744
x>25.4725781381725x<27.934496972854x > 25.4725781381725 \wedge x < 27.934496972854
x>31.7557634453521x<34.2176822800336x > 31.7557634453521 \wedge x < 34.2176822800336
x>38.0389487525316x<40.5008675872132x > 38.0389487525316 \wedge x < 40.5008675872132
x>44.3221340597112x<46.7840528943928x > 44.3221340597112 \wedge x < 46.7840528943928
x>50.6053193668908x<53.0672382015724x > 50.6053193668908 \wedge x < 53.0672382015724
x>56.8885046740704x<59.350423508752x > 56.8885046740704 \wedge x < 59.350423508752
x>63.17168998125x<65.6336088159315x > 63.17168998125 \wedge x < 65.6336088159315
x>69.4548752884296x<71.9167941231111x > 69.4548752884296 \wedge x < 71.9167941231111
x>75.7380605956092x<78.1999794302907x > 75.7380605956092 \wedge x < 78.1999794302907
x>82.0212459027887x<84.4831647374703x > 82.0212459027887 \wedge x < 84.4831647374703
x>88.3044312099683x<90.7663500446499x > 88.3044312099683 \wedge x < 90.7663500446499
x>94.5876165171479x<97.0495353518295x > 94.5876165171479 \wedge x < 97.0495353518295
x>100.870801824328x<172.447759037984x > 100.870801824328 \wedge x < 172.447759037984
x>951.562737128253x > 951.562737128253
Rapid solution [src]
  /   /                /  ___\\     /                    /  ___\    \\
  |   |                |\/ 2 ||     |                    |\/ 2 |    ||
Or|And|0 <= t, t < atan|-----||, And|t <= 2*pi, pi - atan|-----| < t||
  \   \                \  4  //     \                    \  4  /    //
(0tt<atan(24))(t2ππatan(24)<t)\left(0 \leq t \wedge t < \operatorname{atan}{\left(\frac{\sqrt{2}}{4} \right)}\right) \vee \left(t \leq 2 \pi \wedge \pi - \operatorname{atan}{\left(\frac{\sqrt{2}}{4} \right)} < t\right)
((0 <= t)∧(t < atan(sqrt(2)/4)))∨((t <= 2*pi)∧(pi - atan(sqrt(2)/4) < t))
Rapid solution 2 [src]
        /  ___\              /  ___\       
        |\/ 2 |              |\/ 2 |       
[0, atan|-----|) U (pi - atan|-----|, 2*pi]
        \  4  /              \  4  /       
x in [0,atan(24))(πatan(24),2π]x\ in\ \left[0, \operatorname{atan}{\left(\frac{\sqrt{2}}{4} \right)}\right) \cup \left(\pi - \operatorname{atan}{\left(\frac{\sqrt{2}}{4} \right)}, 2 \pi\right]
x in Union(Interval.Ropen(0, atan(sqrt(2)/4)), Interval.Lopen(pi - atan(sqrt(2)/4), 2*pi))