Mister Exam

sint<1\3 inequation

A inequation with variable

The solution

You have entered [src]
sin(t) < 1/3
$$\sin{\left(t \right)} < \frac{1}{3}$$
sin(t) < 1/3
Detail solution
Given the inequality:
$$\sin{\left(t \right)} < \frac{1}{3}$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(t \right)} = \frac{1}{3}$$
Solve:
Given the equation
$$\sin{\left(t \right)} = \frac{1}{3}$$
transform
$$\sin{\left(t \right)} - \frac{1}{3} = 0$$
$$\sin{\left(t \right)} - \frac{1}{3} = 0$$
Do replacement
$$w = \sin{\left(t \right)}$$
Move free summands (without w)
from left part to right part, we given:
$$w = \frac{1}{3}$$
We get the answer: w = 1/3
do backward replacement
$$\sin{\left(t \right)} = w$$
substitute w:
$$x_{1} = 94.5876165171479$$
$$x_{2} = 21.6513116656744$$
$$x_{3} = 44.3221340597112$$
$$x_{4} = -56.2088308551622$$
$$x_{5} = -5.94334839772546$$
$$x_{6} = 172.447759037984$$
$$x_{7} = 78.1999794302907$$
$$x_{8} = 100.870801824328$$
$$x_{9} = -43.642460240803$$
$$x_{10} = 69.4548752884296$$
$$x_{11} = -24.7929043192642$$
$$x_{12} = 63.17168998125$$
$$x_{13} = 19.1893928309929$$
$$x_{14} = 53.0672382015724$$
$$x_{15} = 84.4831647374703$$
$$x_{16} = -18.5097190120846$$
$$x_{17} = -53.7469120204806$$
$$x_{18} = -9.7646148702235$$
$$x_{19} = 90.7663500446499$$
$$x_{20} = -112585.595763607$$
$$x_{21} = 75.7380605956092$$
$$x_{22} = 65.6336088159315$$
$$x_{23} = 27.934496972854$$
$$x_{24} = -34.8973560989418$$
$$x_{25} = -12.2265337049051$$
$$x_{26} = -60.0300973276602$$
$$x_{27} = 46.7840528943928$$
$$x_{28} = 59.350423508752$$
$$x_{29} = 40.5008675872132$$
$$x_{30} = -41.1805414061214$$
$$x_{31} = -87.6247573910601$$
$$x_{32} = -47.463726713301$$
$$x_{33} = -72.5964679420194$$
$$x_{34} = -68.7752014695213$$
$$x_{35} = -100.191128005419$$
$$x_{36} = -116.578765092276$$
$$x_{37} = -49.9256455479826$$
$$x_{38} = -78.879653249199$$
$$x_{39} = 97.0495353518295$$
$$x_{40} = 6.62302221663371$$
$$x_{41} = 9.08494105131526$$
$$x_{42} = 38.0389487525316$$
$$x_{43} = -66.3132826348398$$
$$x_{44} = -37.3592749336234$$
$$x_{45} = 34.2176822800336$$
$$x_{46} = 12.9062075238133$$
$$x_{47} = -3.48142956304392$$
$$x_{48} = -75.0583867767009$$
$$x_{49} = -85.1628385563785$$
$$x_{50} = -22.3309854845827$$
$$x_{51} = 2.80175574413567$$
$$x_{52} = -97.7292091707377$$
$$x_{53} = 951.562737128253$$
$$x_{54} = -81.3415720838805$$
$$x_{55} = 25.4725781381725$$
$$x_{56} = -28.6141707917623$$
$$x_{57} = -31.0760896264438$$
$$x_{58} = -93.9079426982397$$
$$x_{59} = 50.6053193668908$$
$$x_{60} = 15.3681263584948$$
$$x_{61} = -91.4460238635581$$
$$x_{62} = 0.339836909454122$$
$$x_{63} = 71.9167941231111$$
$$x_{64} = 88.3044312099683$$
$$x_{65} = 31.7557634453521$$
$$x_{66} = 82.0212459027887$$
$$x_{67} = 56.8885046740704$$
$$x_{68} = -16.0478001774031$$
$$x_{69} = -62.4920161623417$$
$$x_{1} = 94.5876165171479$$
$$x_{2} = 21.6513116656744$$
$$x_{3} = 44.3221340597112$$
$$x_{4} = -56.2088308551622$$
$$x_{5} = -5.94334839772546$$
$$x_{6} = 172.447759037984$$
$$x_{7} = 78.1999794302907$$
$$x_{8} = 100.870801824328$$
$$x_{9} = -43.642460240803$$
$$x_{10} = 69.4548752884296$$
$$x_{11} = -24.7929043192642$$
$$x_{12} = 63.17168998125$$
$$x_{13} = 19.1893928309929$$
$$x_{14} = 53.0672382015724$$
$$x_{15} = 84.4831647374703$$
$$x_{16} = -18.5097190120846$$
$$x_{17} = -53.7469120204806$$
$$x_{18} = -9.7646148702235$$
$$x_{19} = 90.7663500446499$$
$$x_{20} = -112585.595763607$$
$$x_{21} = 75.7380605956092$$
$$x_{22} = 65.6336088159315$$
$$x_{23} = 27.934496972854$$
$$x_{24} = -34.8973560989418$$
$$x_{25} = -12.2265337049051$$
$$x_{26} = -60.0300973276602$$
$$x_{27} = 46.7840528943928$$
$$x_{28} = 59.350423508752$$
$$x_{29} = 40.5008675872132$$
$$x_{30} = -41.1805414061214$$
$$x_{31} = -87.6247573910601$$
$$x_{32} = -47.463726713301$$
$$x_{33} = -72.5964679420194$$
$$x_{34} = -68.7752014695213$$
$$x_{35} = -100.191128005419$$
$$x_{36} = -116.578765092276$$
$$x_{37} = -49.9256455479826$$
$$x_{38} = -78.879653249199$$
$$x_{39} = 97.0495353518295$$
$$x_{40} = 6.62302221663371$$
$$x_{41} = 9.08494105131526$$
$$x_{42} = 38.0389487525316$$
$$x_{43} = -66.3132826348398$$
$$x_{44} = -37.3592749336234$$
$$x_{45} = 34.2176822800336$$
$$x_{46} = 12.9062075238133$$
$$x_{47} = -3.48142956304392$$
$$x_{48} = -75.0583867767009$$
$$x_{49} = -85.1628385563785$$
$$x_{50} = -22.3309854845827$$
$$x_{51} = 2.80175574413567$$
$$x_{52} = -97.7292091707377$$
$$x_{53} = 951.562737128253$$
$$x_{54} = -81.3415720838805$$
$$x_{55} = 25.4725781381725$$
$$x_{56} = -28.6141707917623$$
$$x_{57} = -31.0760896264438$$
$$x_{58} = -93.9079426982397$$
$$x_{59} = 50.6053193668908$$
$$x_{60} = 15.3681263584948$$
$$x_{61} = -91.4460238635581$$
$$x_{62} = 0.339836909454122$$
$$x_{63} = 71.9167941231111$$
$$x_{64} = 88.3044312099683$$
$$x_{65} = 31.7557634453521$$
$$x_{66} = 82.0212459027887$$
$$x_{67} = 56.8885046740704$$
$$x_{68} = -16.0478001774031$$
$$x_{69} = -62.4920161623417$$
This roots
$$x_{20} = -112585.595763607$$
$$x_{36} = -116.578765092276$$
$$x_{35} = -100.191128005419$$
$$x_{52} = -97.7292091707377$$
$$x_{58} = -93.9079426982397$$
$$x_{61} = -91.4460238635581$$
$$x_{31} = -87.6247573910601$$
$$x_{49} = -85.1628385563785$$
$$x_{54} = -81.3415720838805$$
$$x_{38} = -78.879653249199$$
$$x_{48} = -75.0583867767009$$
$$x_{33} = -72.5964679420194$$
$$x_{34} = -68.7752014695213$$
$$x_{43} = -66.3132826348398$$
$$x_{69} = -62.4920161623417$$
$$x_{26} = -60.0300973276602$$
$$x_{4} = -56.2088308551622$$
$$x_{17} = -53.7469120204806$$
$$x_{37} = -49.9256455479826$$
$$x_{32} = -47.463726713301$$
$$x_{9} = -43.642460240803$$
$$x_{30} = -41.1805414061214$$
$$x_{44} = -37.3592749336234$$
$$x_{24} = -34.8973560989418$$
$$x_{57} = -31.0760896264438$$
$$x_{56} = -28.6141707917623$$
$$x_{11} = -24.7929043192642$$
$$x_{50} = -22.3309854845827$$
$$x_{16} = -18.5097190120846$$
$$x_{68} = -16.0478001774031$$
$$x_{25} = -12.2265337049051$$
$$x_{18} = -9.7646148702235$$
$$x_{5} = -5.94334839772546$$
$$x_{47} = -3.48142956304392$$
$$x_{62} = 0.339836909454122$$
$$x_{51} = 2.80175574413567$$
$$x_{40} = 6.62302221663371$$
$$x_{41} = 9.08494105131526$$
$$x_{46} = 12.9062075238133$$
$$x_{60} = 15.3681263584948$$
$$x_{13} = 19.1893928309929$$
$$x_{2} = 21.6513116656744$$
$$x_{55} = 25.4725781381725$$
$$x_{23} = 27.934496972854$$
$$x_{65} = 31.7557634453521$$
$$x_{45} = 34.2176822800336$$
$$x_{42} = 38.0389487525316$$
$$x_{29} = 40.5008675872132$$
$$x_{3} = 44.3221340597112$$
$$x_{27} = 46.7840528943928$$
$$x_{59} = 50.6053193668908$$
$$x_{14} = 53.0672382015724$$
$$x_{67} = 56.8885046740704$$
$$x_{28} = 59.350423508752$$
$$x_{12} = 63.17168998125$$
$$x_{22} = 65.6336088159315$$
$$x_{10} = 69.4548752884296$$
$$x_{63} = 71.9167941231111$$
$$x_{21} = 75.7380605956092$$
$$x_{7} = 78.1999794302907$$
$$x_{66} = 82.0212459027887$$
$$x_{15} = 84.4831647374703$$
$$x_{64} = 88.3044312099683$$
$$x_{19} = 90.7663500446499$$
$$x_{1} = 94.5876165171479$$
$$x_{39} = 97.0495353518295$$
$$x_{8} = 100.870801824328$$
$$x_{6} = 172.447759037984$$
$$x_{53} = 951.562737128253$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{20}$$
For example, let's take the point
$$x_{0} = x_{20} - \frac{1}{10}$$
=
$$-112585.595763607 + - \frac{1}{10}$$
=
$$-112585.695763607$$
substitute to the expression
$$\sin{\left(t \right)} < \frac{1}{3}$$
$$\sin{\left(t \right)} < \frac{1}{3}$$
sin(t) < 1/3

Then
$$x < -112585.595763607$$
no execute
one of the solutions of our inequality is:
$$x > -112585.595763607 \wedge x < -116.578765092276$$
         _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
        /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /
-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------
       x20      x36      x35      x52      x58      x61      x31      x49      x54      x38      x48      x33      x34      x43      x69      x26      x4      x17      x37      x32      x9      x30      x44      x24      x57      x56      x11      x50      x16      x68      x25      x18      x5      x47      x62      x51      x40      x41      x46      x60      x13      x2      x55      x23      x65      x45      x42      x29      x3      x27      x59      x14      x67      x28      x12      x22      x10      x63      x21      x7      x66      x15      x64      x19      x1      x39      x8      x6      x53

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x > -112585.595763607 \wedge x < -116.578765092276$$
$$x > -100.191128005419 \wedge x < -97.7292091707377$$
$$x > -93.9079426982397 \wedge x < -91.4460238635581$$
$$x > -87.6247573910601 \wedge x < -85.1628385563785$$
$$x > -81.3415720838805 \wedge x < -78.879653249199$$
$$x > -75.0583867767009 \wedge x < -72.5964679420194$$
$$x > -68.7752014695213 \wedge x < -66.3132826348398$$
$$x > -62.4920161623417 \wedge x < -60.0300973276602$$
$$x > -56.2088308551622 \wedge x < -53.7469120204806$$
$$x > -49.9256455479826 \wedge x < -47.463726713301$$
$$x > -43.642460240803 \wedge x < -41.1805414061214$$
$$x > -37.3592749336234 \wedge x < -34.8973560989418$$
$$x > -31.0760896264438 \wedge x < -28.6141707917623$$
$$x > -24.7929043192642 \wedge x < -22.3309854845827$$
$$x > -18.5097190120846 \wedge x < -16.0478001774031$$
$$x > -12.2265337049051 \wedge x < -9.7646148702235$$
$$x > -5.94334839772546 \wedge x < -3.48142956304392$$
$$x > 0.339836909454122 \wedge x < 2.80175574413567$$
$$x > 6.62302221663371 \wedge x < 9.08494105131526$$
$$x > 12.9062075238133 \wedge x < 15.3681263584948$$
$$x > 19.1893928309929 \wedge x < 21.6513116656744$$
$$x > 25.4725781381725 \wedge x < 27.934496972854$$
$$x > 31.7557634453521 \wedge x < 34.2176822800336$$
$$x > 38.0389487525316 \wedge x < 40.5008675872132$$
$$x > 44.3221340597112 \wedge x < 46.7840528943928$$
$$x > 50.6053193668908 \wedge x < 53.0672382015724$$
$$x > 56.8885046740704 \wedge x < 59.350423508752$$
$$x > 63.17168998125 \wedge x < 65.6336088159315$$
$$x > 69.4548752884296 \wedge x < 71.9167941231111$$
$$x > 75.7380605956092 \wedge x < 78.1999794302907$$
$$x > 82.0212459027887 \wedge x < 84.4831647374703$$
$$x > 88.3044312099683 \wedge x < 90.7663500446499$$
$$x > 94.5876165171479 \wedge x < 97.0495353518295$$
$$x > 100.870801824328 \wedge x < 172.447759037984$$
$$x > 951.562737128253$$
Rapid solution [src]
  /   /                /  ___\\     /                    /  ___\    \\
  |   |                |\/ 2 ||     |                    |\/ 2 |    ||
Or|And|0 <= t, t < atan|-----||, And|t <= 2*pi, pi - atan|-----| < t||
  \   \                \  4  //     \                    \  4  /    //
$$\left(0 \leq t \wedge t < \operatorname{atan}{\left(\frac{\sqrt{2}}{4} \right)}\right) \vee \left(t \leq 2 \pi \wedge \pi - \operatorname{atan}{\left(\frac{\sqrt{2}}{4} \right)} < t\right)$$
((0 <= t)∧(t < atan(sqrt(2)/4)))∨((t <= 2*pi)∧(pi - atan(sqrt(2)/4) < t))
Rapid solution 2 [src]
        /  ___\              /  ___\       
        |\/ 2 |              |\/ 2 |       
[0, atan|-----|) U (pi - atan|-----|, 2*pi]
        \  4  /              \  4  /       
$$x\ in\ \left[0, \operatorname{atan}{\left(\frac{\sqrt{2}}{4} \right)}\right) \cup \left(\pi - \operatorname{atan}{\left(\frac{\sqrt{2}}{4} \right)}, 2 \pi\right]$$
x in Union(Interval.Ropen(0, atan(sqrt(2)/4)), Interval.Lopen(pi - atan(sqrt(2)/4), 2*pi))