Mister Exam

Other calculators

sint>=-1/2 inequation

A inequation with variable

The solution

You have entered [src]
sin(t) >= -1/2
$$\sin{\left(t \right)} \geq - \frac{1}{2}$$
sin(t) >= -1/2
Detail solution
Given the inequality:
$$\sin{\left(t \right)} \geq - \frac{1}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(t \right)} = - \frac{1}{2}$$
Solve:
Given the equation
$$\sin{\left(t \right)} = - \frac{1}{2}$$
transform
$$\sin{\left(t \right)} + \frac{1}{2} = 0$$
$$\sin{\left(t \right)} + \frac{1}{2} = 0$$
Do replacement
$$w = \sin{\left(t \right)}$$
Move free summands (without w)
from left part to right part, we given:
$$w = - \frac{1}{2}$$
We get the answer: w = -1/2
do backward replacement
$$\sin{\left(t \right)} = w$$
substitute w:
$$x_{1} = 9.94837673636768$$
$$x_{2} = -75.9218224617533$$
$$x_{3} = 37.1755130674792$$
$$x_{4} = 74.8746249105567$$
$$x_{5} = 24.60914245312$$
$$x_{6} = 60.2138591938044$$
$$x_{7} = -15.1843644923507$$
$$x_{8} = -101.054563690472$$
$$x_{9} = -31.9395253114962$$
$$x_{10} = -25.6563400043166$$
$$x_{11} = 93.7241808320955$$
$$x_{12} = -195.302343298165$$
$$x_{13} = -52.8834763354282$$
$$x_{14} = 85.3466004225227$$
$$x_{15} = -0.523598775598299$$
$$x_{16} = -38.2227106186758$$
$$x_{17} = -57.0722665402146$$
$$x_{18} = -84.2994028713261$$
$$x_{19} = -90.5825881785057$$
$$x_{20} = 62.3082542961976$$
$$x_{21} = 66.497044500984$$
$$x_{22} = 16.2315620435473$$
$$x_{23} = 22.5147473507269$$
$$x_{24} = 28.7979326579064$$
$$x_{25} = 12.0427718387609$$
$$x_{26} = -46.6002910282486$$
$$x_{27} = -78.0162175641465$$
$$x_{28} = -82.2050077689329$$
$$x_{29} = 100.007366139275$$
$$x_{30} = 5.75958653158129$$
$$x_{31} = -8.90117918517108$$
$$x_{32} = -13.0899693899575$$
$$x_{33} = -88.4881930761125$$
$$x_{34} = 437.20497762458$$
$$x_{35} = -94.7713783832921$$
$$x_{36} = -65.4498469497874$$
$$x_{37} = 79.0634151153431$$
$$x_{38} = -19.3731546971371$$
$$x_{39} = 56.025068989018$$
$$x_{40} = -34.0339204138894$$
$$x_{41} = -63.3554518473942$$
$$x_{42} = 91.6297857297023$$
$$x_{43} = -44.5058959258554$$
$$x_{44} = -6.80678408277789$$
$$x_{45} = -2.61799387799149$$
$$x_{46} = 72.7802298081635$$
$$x_{47} = 192.160750644576$$
$$x_{48} = 35.081117965086$$
$$x_{49} = -40.317105721069$$
$$x_{50} = 97.9129710368819$$
$$x_{51} = -96.8657734856853$$
$$x_{52} = -151.320046147908$$
$$x_{53} = 87.4409955249159$$
$$x_{54} = 81.1578102177363$$
$$x_{55} = 66400.1787274983$$
$$x_{56} = 53.9306738866248$$
$$x_{57} = 68.5914396033772$$
$$x_{58} = 3.66519142918809$$
$$x_{59} = -71.733032256967$$
$$x_{60} = -50.789081233035$$
$$x_{61} = -59.1666616426078$$
$$x_{62} = 30.8923277602996$$
$$x_{63} = 47.6474885794452$$
$$x_{64} = -27.7507351067098$$
$$x_{65} = 18.3259571459405$$
$$x_{66} = 43.4586983746588$$
$$x_{67} = 41.3643032722656$$
$$x_{68} = -21.4675497995303$$
$$x_{69} = 49.7418836818384$$
$$x_{70} = -69.6386371545737$$
$$x_{1} = 9.94837673636768$$
$$x_{2} = -75.9218224617533$$
$$x_{3} = 37.1755130674792$$
$$x_{4} = 74.8746249105567$$
$$x_{5} = 24.60914245312$$
$$x_{6} = 60.2138591938044$$
$$x_{7} = -15.1843644923507$$
$$x_{8} = -101.054563690472$$
$$x_{9} = -31.9395253114962$$
$$x_{10} = -25.6563400043166$$
$$x_{11} = 93.7241808320955$$
$$x_{12} = -195.302343298165$$
$$x_{13} = -52.8834763354282$$
$$x_{14} = 85.3466004225227$$
$$x_{15} = -0.523598775598299$$
$$x_{16} = -38.2227106186758$$
$$x_{17} = -57.0722665402146$$
$$x_{18} = -84.2994028713261$$
$$x_{19} = -90.5825881785057$$
$$x_{20} = 62.3082542961976$$
$$x_{21} = 66.497044500984$$
$$x_{22} = 16.2315620435473$$
$$x_{23} = 22.5147473507269$$
$$x_{24} = 28.7979326579064$$
$$x_{25} = 12.0427718387609$$
$$x_{26} = -46.6002910282486$$
$$x_{27} = -78.0162175641465$$
$$x_{28} = -82.2050077689329$$
$$x_{29} = 100.007366139275$$
$$x_{30} = 5.75958653158129$$
$$x_{31} = -8.90117918517108$$
$$x_{32} = -13.0899693899575$$
$$x_{33} = -88.4881930761125$$
$$x_{34} = 437.20497762458$$
$$x_{35} = -94.7713783832921$$
$$x_{36} = -65.4498469497874$$
$$x_{37} = 79.0634151153431$$
$$x_{38} = -19.3731546971371$$
$$x_{39} = 56.025068989018$$
$$x_{40} = -34.0339204138894$$
$$x_{41} = -63.3554518473942$$
$$x_{42} = 91.6297857297023$$
$$x_{43} = -44.5058959258554$$
$$x_{44} = -6.80678408277789$$
$$x_{45} = -2.61799387799149$$
$$x_{46} = 72.7802298081635$$
$$x_{47} = 192.160750644576$$
$$x_{48} = 35.081117965086$$
$$x_{49} = -40.317105721069$$
$$x_{50} = 97.9129710368819$$
$$x_{51} = -96.8657734856853$$
$$x_{52} = -151.320046147908$$
$$x_{53} = 87.4409955249159$$
$$x_{54} = 81.1578102177363$$
$$x_{55} = 66400.1787274983$$
$$x_{56} = 53.9306738866248$$
$$x_{57} = 68.5914396033772$$
$$x_{58} = 3.66519142918809$$
$$x_{59} = -71.733032256967$$
$$x_{60} = -50.789081233035$$
$$x_{61} = -59.1666616426078$$
$$x_{62} = 30.8923277602996$$
$$x_{63} = 47.6474885794452$$
$$x_{64} = -27.7507351067098$$
$$x_{65} = 18.3259571459405$$
$$x_{66} = 43.4586983746588$$
$$x_{67} = 41.3643032722656$$
$$x_{68} = -21.4675497995303$$
$$x_{69} = 49.7418836818384$$
$$x_{70} = -69.6386371545737$$
This roots
$$x_{12} = -195.302343298165$$
$$x_{52} = -151.320046147908$$
$$x_{8} = -101.054563690472$$
$$x_{51} = -96.8657734856853$$
$$x_{35} = -94.7713783832921$$
$$x_{19} = -90.5825881785057$$
$$x_{33} = -88.4881930761125$$
$$x_{18} = -84.2994028713261$$
$$x_{28} = -82.2050077689329$$
$$x_{27} = -78.0162175641465$$
$$x_{2} = -75.9218224617533$$
$$x_{59} = -71.733032256967$$
$$x_{70} = -69.6386371545737$$
$$x_{36} = -65.4498469497874$$
$$x_{41} = -63.3554518473942$$
$$x_{61} = -59.1666616426078$$
$$x_{17} = -57.0722665402146$$
$$x_{13} = -52.8834763354282$$
$$x_{60} = -50.789081233035$$
$$x_{26} = -46.6002910282486$$
$$x_{43} = -44.5058959258554$$
$$x_{49} = -40.317105721069$$
$$x_{16} = -38.2227106186758$$
$$x_{40} = -34.0339204138894$$
$$x_{9} = -31.9395253114962$$
$$x_{64} = -27.7507351067098$$
$$x_{10} = -25.6563400043166$$
$$x_{68} = -21.4675497995303$$
$$x_{38} = -19.3731546971371$$
$$x_{7} = -15.1843644923507$$
$$x_{32} = -13.0899693899575$$
$$x_{31} = -8.90117918517108$$
$$x_{44} = -6.80678408277789$$
$$x_{45} = -2.61799387799149$$
$$x_{15} = -0.523598775598299$$
$$x_{58} = 3.66519142918809$$
$$x_{30} = 5.75958653158129$$
$$x_{1} = 9.94837673636768$$
$$x_{25} = 12.0427718387609$$
$$x_{22} = 16.2315620435473$$
$$x_{65} = 18.3259571459405$$
$$x_{23} = 22.5147473507269$$
$$x_{5} = 24.60914245312$$
$$x_{24} = 28.7979326579064$$
$$x_{62} = 30.8923277602996$$
$$x_{48} = 35.081117965086$$
$$x_{3} = 37.1755130674792$$
$$x_{67} = 41.3643032722656$$
$$x_{66} = 43.4586983746588$$
$$x_{63} = 47.6474885794452$$
$$x_{69} = 49.7418836818384$$
$$x_{56} = 53.9306738866248$$
$$x_{39} = 56.025068989018$$
$$x_{6} = 60.2138591938044$$
$$x_{20} = 62.3082542961976$$
$$x_{21} = 66.497044500984$$
$$x_{57} = 68.5914396033772$$
$$x_{46} = 72.7802298081635$$
$$x_{4} = 74.8746249105567$$
$$x_{37} = 79.0634151153431$$
$$x_{54} = 81.1578102177363$$
$$x_{14} = 85.3466004225227$$
$$x_{53} = 87.4409955249159$$
$$x_{42} = 91.6297857297023$$
$$x_{11} = 93.7241808320955$$
$$x_{50} = 97.9129710368819$$
$$x_{29} = 100.007366139275$$
$$x_{47} = 192.160750644576$$
$$x_{34} = 437.20497762458$$
$$x_{55} = 66400.1787274983$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{12}$$
For example, let's take the point
$$x_{0} = x_{12} - \frac{1}{10}$$
=
$$-195.302343298165 + - \frac{1}{10}$$
=
$$-195.402343298165$$
substitute to the expression
$$\sin{\left(t \right)} \geq - \frac{1}{2}$$
$$\sin{\left(t \right)} \geq - \frac{1}{2}$$
sin(t) >= -1/2

Then
$$x \leq -195.302343298165$$
no execute
one of the solutions of our inequality is:
$$x \geq -195.302343298165 \wedge x \leq -151.320046147908$$
         _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
        /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \  
-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------
       x12      x52      x8      x51      x35      x19      x33      x18      x28      x27      x2      x59      x70      x36      x41      x61      x17      x13      x60      x26      x43      x49      x16      x40      x9      x64      x10      x68      x38      x7      x32      x31      x44      x45      x15      x58      x30      x1      x25      x22      x65      x23      x5      x24      x62      x48      x3      x67      x66      x63      x69      x56      x39      x6      x20      x21      x57      x46      x4      x37      x54      x14      x53      x42      x11      x50      x29      x47      x34      x55

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \geq -195.302343298165 \wedge x \leq -151.320046147908$$
$$x \geq -101.054563690472 \wedge x \leq -96.8657734856853$$
$$x \geq -94.7713783832921 \wedge x \leq -90.5825881785057$$
$$x \geq -88.4881930761125 \wedge x \leq -84.2994028713261$$
$$x \geq -82.2050077689329 \wedge x \leq -78.0162175641465$$
$$x \geq -75.9218224617533 \wedge x \leq -71.733032256967$$
$$x \geq -69.6386371545737 \wedge x \leq -65.4498469497874$$
$$x \geq -63.3554518473942 \wedge x \leq -59.1666616426078$$
$$x \geq -57.0722665402146 \wedge x \leq -52.8834763354282$$
$$x \geq -50.789081233035 \wedge x \leq -46.6002910282486$$
$$x \geq -44.5058959258554 \wedge x \leq -40.317105721069$$
$$x \geq -38.2227106186758 \wedge x \leq -34.0339204138894$$
$$x \geq -31.9395253114962 \wedge x \leq -27.7507351067098$$
$$x \geq -25.6563400043166 \wedge x \leq -21.4675497995303$$
$$x \geq -19.3731546971371 \wedge x \leq -15.1843644923507$$
$$x \geq -13.0899693899575 \wedge x \leq -8.90117918517108$$
$$x \geq -6.80678408277789 \wedge x \leq -2.61799387799149$$
$$x \geq -0.523598775598299 \wedge x \leq 3.66519142918809$$
$$x \geq 5.75958653158129 \wedge x \leq 9.94837673636768$$
$$x \geq 12.0427718387609 \wedge x \leq 16.2315620435473$$
$$x \geq 18.3259571459405 \wedge x \leq 22.5147473507269$$
$$x \geq 24.60914245312 \wedge x \leq 28.7979326579064$$
$$x \geq 30.8923277602996 \wedge x \leq 35.081117965086$$
$$x \geq 37.1755130674792 \wedge x \leq 41.3643032722656$$
$$x \geq 43.4586983746588 \wedge x \leq 47.6474885794452$$
$$x \geq 49.7418836818384 \wedge x \leq 53.9306738866248$$
$$x \geq 56.025068989018 \wedge x \leq 60.2138591938044$$
$$x \geq 62.3082542961976 \wedge x \leq 66.497044500984$$
$$x \geq 68.5914396033772 \wedge x \leq 72.7802298081635$$
$$x \geq 74.8746249105567 \wedge x \leq 79.0634151153431$$
$$x \geq 81.1578102177363 \wedge x \leq 85.3466004225227$$
$$x \geq 87.4409955249159 \wedge x \leq 91.6297857297023$$
$$x \geq 93.7241808320955 \wedge x \leq 97.9129710368819$$
$$x \geq 100.007366139275 \wedge x \leq 192.160750644576$$
$$x \geq 437.20497762458 \wedge x \leq 66400.1787274983$$
Rapid solution [src]
  /   /             7*pi\     /11*pi                \\
Or|And|0 <= t, t <= ----|, And|----- <= t, t <= 2*pi||
  \   \              6  /     \  6                  //
$$\left(0 \leq t \wedge t \leq \frac{7 \pi}{6}\right) \vee \left(\frac{11 \pi}{6} \leq t \wedge t \leq 2 \pi\right)$$
((0 <= t)∧(t <= 7*pi/6))∨((11*pi/6 <= t)∧(t <= 2*pi))
Rapid solution 2 [src]
    7*pi     11*pi       
[0, ----] U [-----, 2*pi]
     6         6         
$$x\ in\ \left[0, \frac{7 \pi}{6}\right] \cup \left[\frac{11 \pi}{6}, 2 \pi\right]$$
x in Union(Interval(0, 7*pi/6), Interval(11*pi/6, 2*pi))