Mister Exam

Limit of the function sin(t)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim sin(t)
t->0+      
$$\lim_{t \to 0^+} \sin{\left(t \right)}$$
Limit(sin(t), t, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
 lim sin(t)
t->0+      
$$\lim_{t \to 0^+} \sin{\left(t \right)}$$
0
$$0$$
= -4.45672020878568e-32
 lim sin(t)
t->0-      
$$\lim_{t \to 0^-} \sin{\left(t \right)}$$
0
$$0$$
= 4.45672020878568e-32
= 4.45672020878568e-32
Other limits t→0, -oo, +oo, 1
$$\lim_{t \to 0^-} \sin{\left(t \right)} = 0$$
More at t→0 from the left
$$\lim_{t \to 0^+} \sin{\left(t \right)} = 0$$
$$\lim_{t \to \infty} \sin{\left(t \right)} = \left\langle -1, 1\right\rangle$$
More at t→oo
$$\lim_{t \to 1^-} \sin{\left(t \right)} = \sin{\left(1 \right)}$$
More at t→1 from the left
$$\lim_{t \to 1^+} \sin{\left(t \right)} = \sin{\left(1 \right)}$$
More at t→1 from the right
$$\lim_{t \to -\infty} \sin{\left(t \right)} = \left\langle -1, 1\right\rangle$$
More at t→-oo
Numerical answer [src]
-4.45672020878568e-32
-4.45672020878568e-32
The graph
Limit of the function sin(t)