Mister Exam

Limit of the function sin(t)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim sin(t)
t->0+      
limt0+sin(t)\lim_{t \to 0^+} \sin{\left(t \right)}
Limit(sin(t), t, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10102-2
Rapid solution [src]
0
00
One‐sided limits [src]
 lim sin(t)
t->0+      
limt0+sin(t)\lim_{t \to 0^+} \sin{\left(t \right)}
0
00
= -4.45672020878568e-32
 lim sin(t)
t->0-      
limt0sin(t)\lim_{t \to 0^-} \sin{\left(t \right)}
0
00
= 4.45672020878568e-32
= 4.45672020878568e-32
Other limits t→0, -oo, +oo, 1
limt0sin(t)=0\lim_{t \to 0^-} \sin{\left(t \right)} = 0
More at t→0 from the left
limt0+sin(t)=0\lim_{t \to 0^+} \sin{\left(t \right)} = 0
limtsin(t)=1,1\lim_{t \to \infty} \sin{\left(t \right)} = \left\langle -1, 1\right\rangle
More at t→oo
limt1sin(t)=sin(1)\lim_{t \to 1^-} \sin{\left(t \right)} = \sin{\left(1 \right)}
More at t→1 from the left
limt1+sin(t)=sin(1)\lim_{t \to 1^+} \sin{\left(t \right)} = \sin{\left(1 \right)}
More at t→1 from the right
limtsin(t)=1,1\lim_{t \to -\infty} \sin{\left(t \right)} = \left\langle -1, 1\right\rangle
More at t→-oo
Numerical answer [src]
-4.45672020878568e-32
-4.45672020878568e-32
The graph
Limit of the function sin(t)