Mister Exam

Other calculators

sin(t)<-0,6 inequation

A inequation with variable

The solution

You have entered [src]
sin(t) < -3/5
$$\sin{\left(t \right)} < - \frac{3}{5}$$
sin(t) < -3/5
Detail solution
Given the inequality:
$$\sin{\left(t \right)} < - \frac{3}{5}$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(t \right)} = - \frac{3}{5}$$
Solve:
Given the equation
$$\sin{\left(t \right)} = - \frac{3}{5}$$
transform
$$\sin{\left(t \right)} + \frac{3}{5} = 0$$
$$\sin{\left(t \right)} + \frac{3}{5} = 0$$
Do replacement
$$w = \sin{\left(t \right)}$$
Move free summands (without w)
from left part to right part, we given:
$$w = - \frac{3}{5}$$
We get the answer: w = -3/5
do backward replacement
$$\sin{\left(t \right)} = w$$
substitute w:
$$x_{1} = -0.643501108793284$$
$$x_{2} = -19.493057030332$$
$$x_{3} = 66.6169468341789$$
$$x_{4} = 37.0556107342842$$
$$x_{5} = -15.0644621591557$$
$$x_{6} = -27.6308327735149$$
$$x_{7} = -107.457651330846$$
$$x_{8} = -94.8912807164871$$
$$x_{9} = 275.816652407109$$
$$x_{10} = 81.0379078845413$$
$$x_{11} = -13.2098717231525$$
$$x_{12} = 54.0505762198198$$
$$x_{13} = -63.4753541805892$$
$$x_{14} = 85.4665027557177$$
$$x_{15} = -40.197203387874$$
$$x_{16} = -46.4803886950536$$
$$x_{17} = -71.613129923772$$
$$x_{18} = -84.1795005381311$$
$$x_{19} = -33.9140180806944$$
$$x_{20} = -25.7762423375116$$
$$x_{21} = -50.90898356623$$
$$x_{22} = 91.7496880628973$$
$$x_{23} = 18.2060548127455$$
$$x_{24} = -101.174466023667$$
$$x_{25} = 16.3514643767422$$
$$x_{26} = 35.201020298281$$
$$x_{27} = 10.0682790695627$$
$$x_{28} = 87.3210931917209$$
$$x_{29} = 11.9228695055659$$
$$x_{30} = 139936.605069959$$
$$x_{31} = -8.7812768519761$$
$$x_{32} = -65.3299446165924$$
$$x_{33} = -77.8963152309515$$
$$x_{34} = -32.0594276446912$$
$$x_{35} = -59.0467593094128$$
$$x_{36} = -52.7635740022332$$
$$x_{37} = 93.6042784989005$$
$$x_{38} = 3280205.36115037$$
$$x_{39} = 60.3337615269994$$
$$x_{40} = -6.92668641597287$$
$$x_{41} = 79.1833174485381$$
$$x_{42} = -57.1921688734096$$
$$x_{43} = -2.49809154479651$$
$$x_{44} = 24.4892401199251$$
$$x_{45} = 30.7724254271046$$
$$x_{46} = 22.6346496839218$$
$$x_{47} = -38.3426129518708$$
$$x_{48} = 28.9178349911014$$
$$x_{49} = 68.4715372701822$$
$$x_{50} = -44.6257982590504$$
$$x_{51} = 98.0328733700769$$
$$x_{52} = -90.4626858453107$$
$$x_{53} = -21.3476474663353$$
$$x_{54} = -96.7458711524903$$
$$x_{55} = -76.0417247949483$$
$$x_{56} = 55.905166655823$$
$$x_{57} = 99.8874638060801$$
$$x_{58} = 72.9001321413585$$
$$x_{59} = 74.7547225773617$$
$$x_{60} = 5.6396841983863$$
$$x_{61} = -88.6080954093075$$
$$x_{62} = 468.740806493672$$
$$x_{63} = 47.7673909126402$$
$$x_{64} = 62.1883519630026$$
$$x_{65} = 41.4842056054606$$
$$x_{66} = 49.6219813486434$$
$$x_{67} = -69.7585394877687$$
$$x_{68} = 43.3387960414638$$
$$x_{69} = -82.3249101021279$$
$$x_{70} = 3.78509376238308$$
$$x_{1} = -0.643501108793284$$
$$x_{2} = -19.493057030332$$
$$x_{3} = 66.6169468341789$$
$$x_{4} = 37.0556107342842$$
$$x_{5} = -15.0644621591557$$
$$x_{6} = -27.6308327735149$$
$$x_{7} = -107.457651330846$$
$$x_{8} = -94.8912807164871$$
$$x_{9} = 275.816652407109$$
$$x_{10} = 81.0379078845413$$
$$x_{11} = -13.2098717231525$$
$$x_{12} = 54.0505762198198$$
$$x_{13} = -63.4753541805892$$
$$x_{14} = 85.4665027557177$$
$$x_{15} = -40.197203387874$$
$$x_{16} = -46.4803886950536$$
$$x_{17} = -71.613129923772$$
$$x_{18} = -84.1795005381311$$
$$x_{19} = -33.9140180806944$$
$$x_{20} = -25.7762423375116$$
$$x_{21} = -50.90898356623$$
$$x_{22} = 91.7496880628973$$
$$x_{23} = 18.2060548127455$$
$$x_{24} = -101.174466023667$$
$$x_{25} = 16.3514643767422$$
$$x_{26} = 35.201020298281$$
$$x_{27} = 10.0682790695627$$
$$x_{28} = 87.3210931917209$$
$$x_{29} = 11.9228695055659$$
$$x_{30} = 139936.605069959$$
$$x_{31} = -8.7812768519761$$
$$x_{32} = -65.3299446165924$$
$$x_{33} = -77.8963152309515$$
$$x_{34} = -32.0594276446912$$
$$x_{35} = -59.0467593094128$$
$$x_{36} = -52.7635740022332$$
$$x_{37} = 93.6042784989005$$
$$x_{38} = 3280205.36115037$$
$$x_{39} = 60.3337615269994$$
$$x_{40} = -6.92668641597287$$
$$x_{41} = 79.1833174485381$$
$$x_{42} = -57.1921688734096$$
$$x_{43} = -2.49809154479651$$
$$x_{44} = 24.4892401199251$$
$$x_{45} = 30.7724254271046$$
$$x_{46} = 22.6346496839218$$
$$x_{47} = -38.3426129518708$$
$$x_{48} = 28.9178349911014$$
$$x_{49} = 68.4715372701822$$
$$x_{50} = -44.6257982590504$$
$$x_{51} = 98.0328733700769$$
$$x_{52} = -90.4626858453107$$
$$x_{53} = -21.3476474663353$$
$$x_{54} = -96.7458711524903$$
$$x_{55} = -76.0417247949483$$
$$x_{56} = 55.905166655823$$
$$x_{57} = 99.8874638060801$$
$$x_{58} = 72.9001321413585$$
$$x_{59} = 74.7547225773617$$
$$x_{60} = 5.6396841983863$$
$$x_{61} = -88.6080954093075$$
$$x_{62} = 468.740806493672$$
$$x_{63} = 47.7673909126402$$
$$x_{64} = 62.1883519630026$$
$$x_{65} = 41.4842056054606$$
$$x_{66} = 49.6219813486434$$
$$x_{67} = -69.7585394877687$$
$$x_{68} = 43.3387960414638$$
$$x_{69} = -82.3249101021279$$
$$x_{70} = 3.78509376238308$$
This roots
$$x_{7} = -107.457651330846$$
$$x_{24} = -101.174466023667$$
$$x_{54} = -96.7458711524903$$
$$x_{8} = -94.8912807164871$$
$$x_{52} = -90.4626858453107$$
$$x_{61} = -88.6080954093075$$
$$x_{18} = -84.1795005381311$$
$$x_{69} = -82.3249101021279$$
$$x_{33} = -77.8963152309515$$
$$x_{55} = -76.0417247949483$$
$$x_{17} = -71.613129923772$$
$$x_{67} = -69.7585394877687$$
$$x_{32} = -65.3299446165924$$
$$x_{13} = -63.4753541805892$$
$$x_{35} = -59.0467593094128$$
$$x_{42} = -57.1921688734096$$
$$x_{36} = -52.7635740022332$$
$$x_{21} = -50.90898356623$$
$$x_{16} = -46.4803886950536$$
$$x_{50} = -44.6257982590504$$
$$x_{15} = -40.197203387874$$
$$x_{47} = -38.3426129518708$$
$$x_{19} = -33.9140180806944$$
$$x_{34} = -32.0594276446912$$
$$x_{6} = -27.6308327735149$$
$$x_{20} = -25.7762423375116$$
$$x_{53} = -21.3476474663353$$
$$x_{2} = -19.493057030332$$
$$x_{5} = -15.0644621591557$$
$$x_{11} = -13.2098717231525$$
$$x_{31} = -8.7812768519761$$
$$x_{40} = -6.92668641597287$$
$$x_{43} = -2.49809154479651$$
$$x_{1} = -0.643501108793284$$
$$x_{70} = 3.78509376238308$$
$$x_{60} = 5.6396841983863$$
$$x_{27} = 10.0682790695627$$
$$x_{29} = 11.9228695055659$$
$$x_{25} = 16.3514643767422$$
$$x_{23} = 18.2060548127455$$
$$x_{46} = 22.6346496839218$$
$$x_{44} = 24.4892401199251$$
$$x_{48} = 28.9178349911014$$
$$x_{45} = 30.7724254271046$$
$$x_{26} = 35.201020298281$$
$$x_{4} = 37.0556107342842$$
$$x_{65} = 41.4842056054606$$
$$x_{68} = 43.3387960414638$$
$$x_{63} = 47.7673909126402$$
$$x_{66} = 49.6219813486434$$
$$x_{12} = 54.0505762198198$$
$$x_{56} = 55.905166655823$$
$$x_{39} = 60.3337615269994$$
$$x_{64} = 62.1883519630026$$
$$x_{3} = 66.6169468341789$$
$$x_{49} = 68.4715372701822$$
$$x_{58} = 72.9001321413585$$
$$x_{59} = 74.7547225773617$$
$$x_{41} = 79.1833174485381$$
$$x_{10} = 81.0379078845413$$
$$x_{14} = 85.4665027557177$$
$$x_{28} = 87.3210931917209$$
$$x_{22} = 91.7496880628973$$
$$x_{37} = 93.6042784989005$$
$$x_{51} = 98.0328733700769$$
$$x_{57} = 99.8874638060801$$
$$x_{9} = 275.816652407109$$
$$x_{62} = 468.740806493672$$
$$x_{30} = 139936.605069959$$
$$x_{38} = 3280205.36115037$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{7}$$
For example, let's take the point
$$x_{0} = x_{7} - \frac{1}{10}$$
=
$$-107.457651330846 + - \frac{1}{10}$$
=
$$-107.557651330846$$
substitute to the expression
$$\sin{\left(t \right)} < - \frac{3}{5}$$
$$\sin{\left(t \right)} < - \frac{3}{5}$$
sin(t) < -3/5

Then
$$x < -107.457651330846$$
no execute
one of the solutions of our inequality is:
$$x > -107.457651330846 \wedge x < -101.174466023667$$
         _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
        /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \  
-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------
       x7      x24      x54      x8      x52      x61      x18      x69      x33      x55      x17      x67      x32      x13      x35      x42      x36      x21      x16      x50      x15      x47      x19      x34      x6      x20      x53      x2      x5      x11      x31      x40      x43      x1      x70      x60      x27      x29      x25      x23      x46      x44      x48      x45      x26      x4      x65      x68      x63      x66      x12      x56      x39      x64      x3      x49      x58      x59      x41      x10      x14      x28      x22      x37      x51      x57      x9      x62      x30      x38

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x > -107.457651330846 \wedge x < -101.174466023667$$
$$x > -96.7458711524903 \wedge x < -94.8912807164871$$
$$x > -90.4626858453107 \wedge x < -88.6080954093075$$
$$x > -84.1795005381311 \wedge x < -82.3249101021279$$
$$x > -77.8963152309515 \wedge x < -76.0417247949483$$
$$x > -71.613129923772 \wedge x < -69.7585394877687$$
$$x > -65.3299446165924 \wedge x < -63.4753541805892$$
$$x > -59.0467593094128 \wedge x < -57.1921688734096$$
$$x > -52.7635740022332 \wedge x < -50.90898356623$$
$$x > -46.4803886950536 \wedge x < -44.6257982590504$$
$$x > -40.197203387874 \wedge x < -38.3426129518708$$
$$x > -33.9140180806944 \wedge x < -32.0594276446912$$
$$x > -27.6308327735149 \wedge x < -25.7762423375116$$
$$x > -21.3476474663353 \wedge x < -19.493057030332$$
$$x > -15.0644621591557 \wedge x < -13.2098717231525$$
$$x > -8.7812768519761 \wedge x < -6.92668641597287$$
$$x > -2.49809154479651 \wedge x < -0.643501108793284$$
$$x > 3.78509376238308 \wedge x < 5.6396841983863$$
$$x > 10.0682790695627 \wedge x < 11.9228695055659$$
$$x > 16.3514643767422 \wedge x < 18.2060548127455$$
$$x > 22.6346496839218 \wedge x < 24.4892401199251$$
$$x > 28.9178349911014 \wedge x < 30.7724254271046$$
$$x > 35.201020298281 \wedge x < 37.0556107342842$$
$$x > 41.4842056054606 \wedge x < 43.3387960414638$$
$$x > 47.7673909126402 \wedge x < 49.6219813486434$$
$$x > 54.0505762198198 \wedge x < 55.905166655823$$
$$x > 60.3337615269994 \wedge x < 62.1883519630026$$
$$x > 66.6169468341789 \wedge x < 68.4715372701822$$
$$x > 72.9001321413585 \wedge x < 74.7547225773617$$
$$x > 79.1833174485381 \wedge x < 81.0379078845413$$
$$x > 85.4665027557177 \wedge x < 87.3210931917209$$
$$x > 91.7496880628973 \wedge x < 93.6042784989005$$
$$x > 98.0328733700769 \wedge x < 99.8874638060801$$
$$x > 275.816652407109 \wedge x < 468.740806493672$$
$$x > 139936.605069959 \wedge x < 3280205.36115037$$
Rapid solution [src]
And(t < -atan(3/4) + 2*pi, pi + atan(3/4) < t)
$$t < - \operatorname{atan}{\left(\frac{3}{4} \right)} + 2 \pi \wedge \operatorname{atan}{\left(\frac{3}{4} \right)} + \pi < t$$
(pi + atan(3/4) < t)∧(t < -atan(3/4) + 2*pi)
Rapid solution 2 [src]
(pi + atan(3/4), -atan(3/4) + 2*pi)
$$x\ in\ \left(\operatorname{atan}{\left(\frac{3}{4} \right)} + \pi, - \operatorname{atan}{\left(\frac{3}{4} \right)} + 2 \pi\right)$$
x in Interval.open(atan(3/4) + pi, -atan(3/4) + 2*pi)