Mister Exam

Other calculators


cos(z)=3

cos(z)=3 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
cos(z) = 3
$$\cos{\left(z \right)} = 3$$
Detail solution
Given the equation
$$\cos{\left(z \right)} = 3$$
- this is the simplest trigonometric equation
As right part of the equation
modulo =
$$3 > 1$$
but cos can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
Sum and product of roots [src]
sum
2*pi - I*im(acos(3)) + I*im(acos(3))
$$\left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(3 \right)}\right)}\right) + \left(i \operatorname{im}{\left(\operatorname{acos}{\left(3 \right)}\right)}\right)$$
=
2*pi
$$2 \pi$$
product
2*pi - I*im(acos(3)) * I*im(acos(3))
$$\left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(3 \right)}\right)}\right) * \left(i \operatorname{im}{\left(\operatorname{acos}{\left(3 \right)}\right)}\right)$$
=
(2*pi*I + im(acos(3)))*im(acos(3))
$$\left(\operatorname{im}{\left(\operatorname{acos}{\left(3 \right)}\right)} + 2 i \pi\right) \operatorname{im}{\left(\operatorname{acos}{\left(3 \right)}\right)}$$
Rapid solution [src]
z_1 = 2*pi - I*im(acos(3))
$$z_{1} = 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(3 \right)}\right)}$$
z_2 = I*im(acos(3))
$$z_{2} = i \operatorname{im}{\left(\operatorname{acos}{\left(3 \right)}\right)}$$
Numerical answer [src]
z1 = 6.28318530717959 - 1.76274717403909*i
z2 = 1.76274717403909*i
z2 = 1.76274717403909*i
The graph
cos(z)=3 equation