Mister Exam

Integral of cos(z) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  cos(z) dz
 |           
/            
0            
01cos(z)dz\int\limits_{0}^{1} \cos{\left(z \right)}\, dz
Integral(cos(z), (z, 0, 1))
Detail solution
  1. The integral of cosine is sine:

    cos(z)dz=sin(z)\int \cos{\left(z \right)}\, dz = \sin{\left(z \right)}

  2. Add the constant of integration:

    sin(z)+constant\sin{\left(z \right)}+ \mathrm{constant}


The answer is:

sin(z)+constant\sin{\left(z \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      
 |                       
 | cos(z) dz = C + sin(z)
 |                       
/                        
sinz\sin z
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
sin(1)
sin1\sin 1
=
=
sin(1)
sin(1)\sin{\left(1 \right)}
Numerical answer [src]
0.841470984807897
0.841470984807897
The graph
Integral of cos(z) dx

    Use the examples entering the upper and lower limits of integration.