Mister Exam

isinz+cosz=i-1 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
I*sin(z) + cos(z) = I - 1
$$i \sin{\left(z \right)} + \cos{\left(z \right)} = -1 + i$$
The graph
Rapid solution [src]
z1 = 2*re(atan(2 - I)) + 2*I*im(atan(2 - I))
$$z_{1} = 2 \operatorname{re}{\left(\operatorname{atan}{\left(2 - i \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(2 - i \right)}\right)}$$
z1 = 2*re(atan(2 - i)) + 2*i*im(atan(2 - i))
Sum and product of roots [src]
sum
2*re(atan(2 - I)) + 2*I*im(atan(2 - I))
$$2 \operatorname{re}{\left(\operatorname{atan}{\left(2 - i \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(2 - i \right)}\right)}$$
=
2*re(atan(2 - I)) + 2*I*im(atan(2 - I))
$$2 \operatorname{re}{\left(\operatorname{atan}{\left(2 - i \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(2 - i \right)}\right)}$$
product
2*re(atan(2 - I)) + 2*I*im(atan(2 - I))
$$2 \operatorname{re}{\left(\operatorname{atan}{\left(2 - i \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(2 - i \right)}\right)}$$
=
2*re(atan(2 - I)) + 2*I*im(atan(2 - I))
$$2 \operatorname{re}{\left(\operatorname{atan}{\left(2 - i \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(2 - i \right)}\right)}$$
2*re(atan(2 - i)) + 2*i*im(atan(2 - i))
Numerical answer [src]
z1 = -60.4756585816035 - 0.346573590279973*i
z2 = 14.9225651045515 - 0.346573590279973*i
z3 = -41.6261026600648 - 0.346573590279973*i
z4 = 58.9048622548086 - 0.346573590279973*i
z5 = 65.1880475619882 - 0.346573590279973*i
z6 = 40.0553063332699 - 0.346573590279973*i
z7 = -3.92699081698724 - 0.346573590279973*i
z8 = -10.2101761241668 - 0.346573590279973*i
z9 = -35.3429173528852 - 0.346573590279973*i
z10 = 27.4889357189107 - 0.346573590279973*i
z11 = -29.0597320457056 - 0.346573590279973*i
z12 = -73.0420291959627 - 0.346573590279973*i
z13 = 77.7544181763474 - 0.346573590279973*i
z14 = -54.1924732744239 - 0.346573590279973*i
z15 = 33.7721210260903 - 0.346573590279973*i
z16 = -16.4933614313464 - 0.346573590279973*i
z17 = -22.776546738526 - 0.346573590279973*i
z18 = -98.174770424681 - 0.346573590279973*i
z19 = -79.3252145031423 - 0.346573590279973*i
z20 = -85.6083998103219 - 0.346573590279973*i
z21 = 8.63937979737193 - 0.346573590279973*i
z22 = -47.9092879672443 - 0.346573590279973*i
z23 = 52.621676947629 - 0.346573590279973*i
z24 = -91.8915851175014 - 0.346573590279973*i
z25 = 46.3384916404494 - 0.346573590279973*i
z26 = 2.35619449019234 - 0.346573590279973*i
z27 = 84.037603483527 - 0.346573590279973*i
z28 = 90.3207887907066 - 0.346573590279973*i
z29 = 96.6039740978861 - 0.346573590279973*i
z30 = 71.4712328691678 - 0.346573590279973*i
z31 = -66.7588438887831 - 0.346573590279973*i
z32 = 21.2057504117311 - 0.346573590279973*i
z32 = 21.2057504117311 - 0.346573590279973*i