Mister Exam

Derivative of x^ln(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 log(x)
x      
$$x^{\log{\left(x \right)}}$$
x^log(x)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
   log(x)       
2*x      *log(x)
----------------
       x        
$$\frac{2 x^{\log{\left(x \right)}} \log{\left(x \right)}}{x}$$
The second derivative [src]
   log(x) /                  2   \
2*x      *\1 - log(x) + 2*log (x)/
----------------------------------
                 2                
                x                 
$$\frac{2 x^{\log{\left(x \right)}} \left(2 \log{\left(x \right)}^{2} - \log{\left(x \right)} + 1\right)}{x^{2}}$$
The third derivative [src]
   log(x) /          2           3              \
2*x      *\-3 - 6*log (x) + 4*log (x) + 8*log(x)/
-------------------------------------------------
                         3                       
                        x                        
$$\frac{2 x^{\log{\left(x \right)}} \left(4 \log{\left(x \right)}^{3} - 6 \log{\left(x \right)}^{2} + 8 \log{\left(x \right)} - 3\right)}{x^{3}}$$
The graph
Derivative of x^ln(x)