Detail solution
-
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
The first derivative
[src]
log(x)
2*x *log(x)
----------------
x
$$\frac{2 x^{\log{\left(x \right)}} \log{\left(x \right)}}{x}$$
The second derivative
[src]
log(x) / 2 \
2*x *\1 - log(x) + 2*log (x)/
----------------------------------
2
x
$$\frac{2 x^{\log{\left(x \right)}} \left(2 \log{\left(x \right)}^{2} - \log{\left(x \right)} + 1\right)}{x^{2}}$$
The third derivative
[src]
log(x) / 2 3 \
2*x *\-3 - 6*log (x) + 4*log (x) + 8*log(x)/
-------------------------------------------------
3
x
$$\frac{2 x^{\log{\left(x \right)}} \left(4 \log{\left(x \right)}^{3} - 6 \log{\left(x \right)}^{2} + 8 \log{\left(x \right)} - 3\right)}{x^{3}}$$