Mister Exam

Integral of x^ln(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |   log(x)   
 |  x       dx
 |            
/             
0             
$$\int\limits_{0}^{1} x^{\log{\left(x \right)}}\, dx$$
Integral(x^log(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                   /          
 |                   |           
 |  log(x)           |  log(x)   
 | x       dx = C +  | x       dx
 |                   |           
/                   /            
$$\int x^{\log{\left(x \right)}}\, dx = C + \int x^{\log{\left(x \right)}}\, dx$$
The answer [src]
  1           
  /           
 |            
 |   log(x)   
 |  x       dx
 |            
/             
0             
$$\int\limits_{0}^{1} x^{\log{\left(x \right)}}\, dx$$
=
=
  1           
  /           
 |            
 |   log(x)   
 |  x       dx
 |            
/             
0             
$$\int\limits_{0}^{1} x^{\log{\left(x \right)}}\, dx$$
Integral(x^log(x), (x, 0, 1))
Numerical answer [src]
9.74113051242132e+811
9.74113051242132e+811

    Use the examples entering the upper and lower limits of integration.