Mister Exam

Derivative of (lnx^x)/x^lnx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   x   
log (x)
-------
 log(x)
x      
$$\frac{\log{\left(x \right)}^{x}}{x^{\log{\left(x \right)}}}$$
  /   x   \
d |log (x)|
--|-------|
dx| log(x)|
  \x      /
$$\frac{d}{d x} \frac{\log{\left(x \right)}^{x}}{x^{\log{\left(x \right)}}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Don't know the steps in finding this derivative.

      But the derivative is

    To find :

    1. Don't know the steps in finding this derivative.

      But the derivative is

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                                             -log(x)    x          
 -log(x)    x    /  1                 \   2*x       *log (x)*log(x)
x       *log (x)*|------ + log(log(x))| - -------------------------
                 \log(x)              /               x            
$$x^{- \log{\left(x \right)}} \left(\log{\left(\log{\left(x \right)} \right)} + \frac{1}{\log{\left(x \right)}}\right) \log{\left(x \right)}^{x} - \frac{2 x^{- \log{\left(x \right)}} \log{\left(x \right)} \log{\left(x \right)}^{x}}{x}$$
The second derivative [src]
                 /                                                              1        /  1                 \       \
                 |                      2     /          2            \   1 - ------   4*|------ + log(log(x))|*log(x)|
 -log(x)    x    |/  1                 \    2*\-1 + 2*log (x) + log(x)/       log(x)     \log(x)              /       |
x       *log (x)*||------ + log(log(x))|  + --------------------------- + ---------- - -------------------------------|
                 |\log(x)              /                  2                x*log(x)                   x               |
                 \                                       x                                                            /
$$x^{- \log{\left(x \right)}} \left(\left(\log{\left(\log{\left(x \right)} \right)} + \frac{1}{\log{\left(x \right)}}\right)^{2} + \frac{1 - \frac{1}{\log{\left(x \right)}}}{x \log{\left(x \right)}} - \frac{4 \left(\log{\left(\log{\left(x \right)} \right)} + \frac{1}{\log{\left(x \right)}}\right) \log{\left(x \right)}}{x} + \frac{2 \cdot \left(2 \log{\left(x \right)}^{2} + \log{\left(x \right)} - 1\right)}{x^{2}}\right) \log{\left(x \right)}^{x}$$
The third derivative [src]
                 /                                                                                      /                                1   \                                                                                                    \
                 |                                                                             2        |                      2   1 - ------|                                                                                                    |
                 |                                                                      1 - -------     |/  1                 \        log(x)|            /  1                 \ /          2            \     /      1   \ /  1                 \|
                 |                      3     /                     3           2   \          2      6*||------ + log(log(x))|  + ----------|*log(x)   6*|------ + log(log(x))|*\-1 + 2*log (x) + log(x)/   3*|1 - ------|*|------ + log(log(x))||
 -log(x)    x    |/  1                 \    2*\-3 - 4*log(x) + 4*log (x) + 6*log (x)/       log (x)     \\log(x)              /     x*log(x) /            \log(x)              /                               \    log(x)/ \log(x)              /|
x       *log (x)*||------ + log(log(x))|  - ----------------------------------------- - ----------- - ----------------------------------------------- + -------------------------------------------------- + -------------------------------------|
                 |\log(x)              /                         3                        2                                  x                                                   2                                          x*log(x)              |
                 \                                              x                        x *log(x)                                                                              x                                                                 /
$$x^{- \log{\left(x \right)}} \left(\left(\log{\left(\log{\left(x \right)} \right)} + \frac{1}{\log{\left(x \right)}}\right)^{3} + \frac{3 \cdot \left(1 - \frac{1}{\log{\left(x \right)}}\right) \left(\log{\left(\log{\left(x \right)} \right)} + \frac{1}{\log{\left(x \right)}}\right)}{x \log{\left(x \right)}} - \frac{6 \left(\left(\log{\left(\log{\left(x \right)} \right)} + \frac{1}{\log{\left(x \right)}}\right)^{2} + \frac{1 - \frac{1}{\log{\left(x \right)}}}{x \log{\left(x \right)}}\right) \log{\left(x \right)}}{x} - \frac{1 - \frac{2}{\log{\left(x \right)}^{2}}}{x^{2} \log{\left(x \right)}} + \frac{6 \left(\log{\left(\log{\left(x \right)} \right)} + \frac{1}{\log{\left(x \right)}}\right) \left(2 \log{\left(x \right)}^{2} + \log{\left(x \right)} - 1\right)}{x^{2}} - \frac{2 \cdot \left(4 \log{\left(x \right)}^{3} + 6 \log{\left(x \right)}^{2} - 4 \log{\left(x \right)} - 3\right)}{x^{3}}\right) \log{\left(x \right)}^{x}$$
The graph
Derivative of (lnx^x)/x^lnx