x log (x) ------- log(x) x
/ x \ d |log (x)| --|-------| dx| log(x)| \x /
Apply the quotient rule, which is:
and .
To find :
Don't know the steps in finding this derivative.
But the derivative is
To find :
Don't know the steps in finding this derivative.
But the derivative is
Now plug in to the quotient rule:
Now simplify:
The answer is:
-log(x) x
-log(x) x / 1 \ 2*x *log (x)*log(x)
x *log (x)*|------ + log(log(x))| - -------------------------
\log(x) / x
/ 1 / 1 \ \
| 2 / 2 \ 1 - ------ 4*|------ + log(log(x))|*log(x)|
-log(x) x |/ 1 \ 2*\-1 + 2*log (x) + log(x)/ log(x) \log(x) / |
x *log (x)*||------ + log(log(x))| + --------------------------- + ---------- - -------------------------------|
|\log(x) / 2 x*log(x) x |
\ x /
/ / 1 \ \
| 2 | 2 1 - ------| |
| 1 - ------- |/ 1 \ log(x)| / 1 \ / 2 \ / 1 \ / 1 \|
| 3 / 3 2 \ 2 6*||------ + log(log(x))| + ----------|*log(x) 6*|------ + log(log(x))|*\-1 + 2*log (x) + log(x)/ 3*|1 - ------|*|------ + log(log(x))||
-log(x) x |/ 1 \ 2*\-3 - 4*log(x) + 4*log (x) + 6*log (x)/ log (x) \\log(x) / x*log(x) / \log(x) / \ log(x)/ \log(x) /|
x *log (x)*||------ + log(log(x))| - ----------------------------------------- - ----------- - ----------------------------------------------- + -------------------------------------------------- + -------------------------------------|
|\log(x) / 3 2 x 2 x*log(x) |
\ x x *log(x) x /