Mister Exam

Derivative of (arccos(5x))^(ln(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    log(x)     
acos      (5*x)
$$\operatorname{acos}^{\log{\left(x \right)}}{\left(5 x \right)}$$
d /    log(x)     \
--\acos      (5*x)/
dx                 
$$\frac{d}{d x} \operatorname{acos}^{\log{\left(x \right)}}{\left(5 x \right)}$$
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
    log(x)      /log(acos(5*x))           5*log(x)        \
acos      (5*x)*|-------------- - ------------------------|
                |      x             ___________          |
                |                   /         2           |
                \                 \/  1 - 25*x  *acos(5*x)/
$$\left(- \frac{5 \log{\left(x \right)}}{\sqrt{1 - 25 x^{2}} \operatorname{acos}{\left(5 x \right)}} + \frac{\log{\left(\operatorname{acos}{\left(5 x \right)} \right)}}{x}\right) \operatorname{acos}^{\log{\left(x \right)}}{\left(5 x \right)}$$
The second derivative [src]
                /                                             2                                                                                                   \
    log(x)      |/  log(acos(5*x))           5*log(x)        \    log(acos(5*x))               10                      25*log(x)                125*x*log(x)      |
acos      (5*x)*||- -------------- + ------------------------|  - -------------- - -------------------------- + ----------------------- - ------------------------|
                ||        x             ___________          |           2              ___________             /         2\     2                   3/2          |
                ||                     /         2           |          x              /         2              \-1 + 25*x /*acos (5*x)   /        2\             |
                \\                   \/  1 - 25*x  *acos(5*x)/                     x*\/  1 - 25*x  *acos(5*x)                             \1 - 25*x /   *acos(5*x)/
$$\left(- \frac{125 x \log{\left(x \right)}}{\left(1 - 25 x^{2}\right)^{\frac{3}{2}} \operatorname{acos}{\left(5 x \right)}} + \left(\frac{5 \log{\left(x \right)}}{\sqrt{1 - 25 x^{2}} \operatorname{acos}{\left(5 x \right)}} - \frac{\log{\left(\operatorname{acos}{\left(5 x \right)} \right)}}{x}\right)^{2} + \frac{25 \log{\left(x \right)}}{\left(25 x^{2} - 1\right) \operatorname{acos}^{2}{\left(5 x \right)}} - \frac{10}{x \sqrt{1 - 25 x^{2}} \operatorname{acos}{\left(5 x \right)}} - \frac{\log{\left(\operatorname{acos}{\left(5 x \right)} \right)}}{x^{2}}\right) \operatorname{acos}^{\log{\left(x \right)}}{\left(5 x \right)}$$
The third derivative [src]
                /                                               3                                                                                                                                                                                                                                                                                                                                  2                                       \
    log(x)      |  /  log(acos(5*x))           5*log(x)        \              375              2*log(acos(5*x))     /  log(acos(5*x))           5*log(x)        \ /log(acos(5*x))          25*log(x)                      10                     125*x*log(x)      \           250*log(x)                 125*log(x)                       15                           75                   9375*x *log(x)             1875*x*log(x)      |
acos      (5*x)*|- |- -------------- + ------------------------|  - ------------------------ + ---------------- + 3*|- -------------- + ------------------------|*|-------------- - ----------------------- + -------------------------- + ------------------------| - ------------------------- - ------------------------ + --------------------------- + ------------------------- - ------------------------ - ------------------------|
                |  |        x             ___________          |               3/2                     3            |        x             ___________          | |       2         /         2\     2             ___________                        3/2          |              3/2                         3/2                   ___________               /         2\     2                   5/2                         2           |
                |  |                     /         2           |    /        2\                       x             |                     /         2           | |      x          \-1 + 25*x /*acos (5*x)       /         2              /        2\             |   /        2\        3        /        2\                 2   /         2              x*\-1 + 25*x /*acos (5*x)   /        2\                /         2\      2     |
                \  \                   \/  1 - 25*x  *acos(5*x)/    \1 - 25*x /   *acos(5*x)                        \                   \/  1 - 25*x  *acos(5*x)/ \                                           x*\/  1 - 25*x  *acos(5*x)   \1 - 25*x /   *acos(5*x)/   \1 - 25*x /   *acos (5*x)   \1 - 25*x /   *acos(5*x)   x *\/  1 - 25*x  *acos(5*x)                               \1 - 25*x /   *acos(5*x)   \-1 + 25*x / *acos (5*x)/
$$\left(- \frac{9375 x^{2} \log{\left(x \right)}}{\left(1 - 25 x^{2}\right)^{\frac{5}{2}} \operatorname{acos}{\left(5 x \right)}} - \frac{1875 x \log{\left(x \right)}}{\left(25 x^{2} - 1\right)^{2} \operatorname{acos}^{2}{\left(5 x \right)}} - \left(\frac{5 \log{\left(x \right)}}{\sqrt{1 - 25 x^{2}} \operatorname{acos}{\left(5 x \right)}} - \frac{\log{\left(\operatorname{acos}{\left(5 x \right)} \right)}}{x}\right)^{3} + 3 \cdot \left(\frac{5 \log{\left(x \right)}}{\sqrt{1 - 25 x^{2}} \operatorname{acos}{\left(5 x \right)}} - \frac{\log{\left(\operatorname{acos}{\left(5 x \right)} \right)}}{x}\right) \left(\frac{125 x \log{\left(x \right)}}{\left(1 - 25 x^{2}\right)^{\frac{3}{2}} \operatorname{acos}{\left(5 x \right)}} - \frac{25 \log{\left(x \right)}}{\left(25 x^{2} - 1\right) \operatorname{acos}^{2}{\left(5 x \right)}} + \frac{10}{x \sqrt{1 - 25 x^{2}} \operatorname{acos}{\left(5 x \right)}} + \frac{\log{\left(\operatorname{acos}{\left(5 x \right)} \right)}}{x^{2}}\right) - \frac{125 \log{\left(x \right)}}{\left(1 - 25 x^{2}\right)^{\frac{3}{2}} \operatorname{acos}{\left(5 x \right)}} - \frac{250 \log{\left(x \right)}}{\left(1 - 25 x^{2}\right)^{\frac{3}{2}} \operatorname{acos}^{3}{\left(5 x \right)}} - \frac{375}{\left(1 - 25 x^{2}\right)^{\frac{3}{2}} \operatorname{acos}{\left(5 x \right)}} + \frac{75}{x \left(25 x^{2} - 1\right) \operatorname{acos}^{2}{\left(5 x \right)}} + \frac{15}{x^{2} \sqrt{1 - 25 x^{2}} \operatorname{acos}{\left(5 x \right)}} + \frac{2 \log{\left(\operatorname{acos}{\left(5 x \right)} \right)}}{x^{3}}\right) \operatorname{acos}^{\log{\left(x \right)}}{\left(5 x \right)}$$
The graph
Derivative of (arccos(5x))^(ln(x))