log(x) acos (5*x)
d / log(x) \ --\acos (5*x)/ dx
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
log(x) /log(acos(5*x)) 5*log(x) \
acos (5*x)*|-------------- - ------------------------|
| x ___________ |
| / 2 |
\ \/ 1 - 25*x *acos(5*x)/
/ 2 \
log(x) |/ log(acos(5*x)) 5*log(x) \ log(acos(5*x)) 10 25*log(x) 125*x*log(x) |
acos (5*x)*||- -------------- + ------------------------| - -------------- - -------------------------- + ----------------------- - ------------------------|
|| x ___________ | 2 ___________ / 2\ 2 3/2 |
|| / 2 | x / 2 \-1 + 25*x /*acos (5*x) / 2\ |
\\ \/ 1 - 25*x *acos(5*x)/ x*\/ 1 - 25*x *acos(5*x) \1 - 25*x / *acos(5*x)/
/ 3 2 \
log(x) | / log(acos(5*x)) 5*log(x) \ 375 2*log(acos(5*x)) / log(acos(5*x)) 5*log(x) \ /log(acos(5*x)) 25*log(x) 10 125*x*log(x) \ 250*log(x) 125*log(x) 15 75 9375*x *log(x) 1875*x*log(x) |
acos (5*x)*|- |- -------------- + ------------------------| - ------------------------ + ---------------- + 3*|- -------------- + ------------------------|*|-------------- - ----------------------- + -------------------------- + ------------------------| - ------------------------- - ------------------------ + --------------------------- + ------------------------- - ------------------------ - ------------------------|
| | x ___________ | 3/2 3 | x ___________ | | 2 / 2\ 2 ___________ 3/2 | 3/2 3/2 ___________ / 2\ 2 5/2 2 |
| | / 2 | / 2\ x | / 2 | | x \-1 + 25*x /*acos (5*x) / 2 / 2\ | / 2\ 3 / 2\ 2 / 2 x*\-1 + 25*x /*acos (5*x) / 2\ / 2\ 2 |
\ \ \/ 1 - 25*x *acos(5*x)/ \1 - 25*x / *acos(5*x) \ \/ 1 - 25*x *acos(5*x)/ \ x*\/ 1 - 25*x *acos(5*x) \1 - 25*x / *acos(5*x)/ \1 - 25*x / *acos (5*x) \1 - 25*x / *acos(5*x) x *\/ 1 - 25*x *acos(5*x) \1 - 25*x / *acos(5*x) \-1 + 25*x / *acos (5*x)/