log(x) atan (x)
d / log(x) \ --\atan (x)/ dx
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
log(x) /log(atan(x)) log(x) \
atan (x)*|------------ + ----------------|
| x / 2\ |
\ \1 + x /*atan(x)/
/ 2 \
log(x) |/log(atan(x)) log(x) \ log(atan(x)) log(x) 2 2*x*log(x) |
atan (x)*||------------ + ----------------| - ------------ - ------------------ + ------------------ - -----------------|
|| x / 2\ | 2 2 / 2\ 2 |
|\ \1 + x /*atan(x)/ x / 2\ 2 x*\1 + x /*atan(x) / 2\ |
\ \1 + x / *atan (x) \1 + x / *atan(x)/
/ 3 2 \
log(x) |/log(atan(x)) log(x) \ 6 /log(atan(x)) log(x) \ /log(atan(x)) log(x) 2 2*x*log(x) \ 2*log(atan(x)) 3 3 2*log(x) 2*log(x) 6*x*log(x) 8*x *log(x) |
atan (x)*||------------ + ----------------| - ----------------- - 3*|------------ + ----------------|*|------------ + ------------------ - ------------------ + -----------------| + -------------- - -------------------- - ------------------- - ----------------- + ------------------ + ------------------ + -----------------|
|| x / 2\ | 2 | x / 2\ | | 2 2 / 2\ 2 | 3 2 2 / 2\ 2 3 3 3 |
|\ \1 + x /*atan(x)/ / 2\ \ \1 + x /*atan(x)/ | x / 2\ 2 x*\1 + x /*atan(x) / 2\ | x / 2\ 2 x *\1 + x /*atan(x) / 2\ / 2\ 3 / 2\ 2 / 2\ |
\ \1 + x / *atan(x) \ \1 + x / *atan (x) \1 + x / *atan(x)/ x*\1 + x / *atan (x) \1 + x / *atan(x) \1 + x / *atan (x) \1 + x / *atan (x) \1 + x / *atan(x)/