Mister Exam

Derivative of x/sin(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x   
------
sin(x)
$$\frac{x}{\sin{\left(x \right)}}$$
d /  x   \
--|------|
dx\sin(x)/
$$\frac{d}{d x} \frac{x}{\sin{\left(x \right)}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. The derivative of sine is cosine:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
  1      x*cos(x)
------ - --------
sin(x)      2    
         sin (x) 
$$- \frac{x \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{1}{\sin{\left(x \right)}}$$
The second derivative [src]
  /         2   \           
  |    2*cos (x)|   2*cos(x)
x*|1 + ---------| - --------
  |        2    |    sin(x) 
  \     sin (x) /           
----------------------------
           sin(x)           
$$\frac{x \left(1 + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) - \frac{2 \cos{\left(x \right)}}{\sin{\left(x \right)}}}{\sin{\left(x \right)}}$$
The third derivative [src]
                  /         2   \       
                  |    6*cos (x)|       
                x*|5 + ---------|*cos(x)
         2        |        2    |       
    6*cos (x)     \     sin (x) /       
3 + --------- - ------------------------
        2                sin(x)         
     sin (x)                            
----------------------------------------
                 sin(x)                 
$$\frac{- \frac{x \left(5 + \frac{6 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{\sin{\left(x \right)}} + 3 + \frac{6 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}}{\sin{\left(x \right)}}$$
The graph
Derivative of x/sin(x)