Mister Exam

Derivative of ln(tgx/2)-x/sinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /tan(x)\     x   
log|------| - ------
   \  2   /   sin(x)
$$- \frac{x}{\sin{\left(x \right)}} + \log{\left(\frac{\tan{\left(x \right)}}{2} \right)}$$
log(tan(x)/2) - x/sin(x)
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. The derivative of sine is cosine:

          To find :

          1. The derivative of cosine is negative sine:

          Now plug in to the quotient rule:

        So, the result is:

      The result of the chain rule is:

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Apply the power rule: goes to

        To find :

        1. The derivative of sine is cosine:

        Now plug in to the quotient rule:

      So, the result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
             /       2   \           
             |1   tan (x)|           
           2*|- + -------|           
    1        \2      2   /   x*cos(x)
- ------ + --------------- + --------
  sin(x)        tan(x)          2    
                             sin (x) 
$$\frac{x \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{2 \left(\frac{\tan^{2}{\left(x \right)}}{2} + \frac{1}{2}\right)}{\tan{\left(x \right)}} - \frac{1}{\sin{\left(x \right)}}$$
The second derivative [src]
                                      2                         
                         /       2   \                      2   
         2        x      \1 + tan (x)/    2*cos(x)   2*x*cos (x)
2 + 2*tan (x) - ------ - -------------- + -------- - -----------
                sin(x)         2             2            3     
                            tan (x)       sin (x)      sin (x)  
$$- \frac{x}{\sin{\left(x \right)}} - \frac{2 x \cos^{2}{\left(x \right)}}{\sin^{3}{\left(x \right)}} - \frac{\left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan^{2}{\left(x \right)}} + 2 \tan^{2}{\left(x \right)} + 2 + \frac{2 \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$
The third derivative [src]
                                      2                  3                                                    
                2        /       2   \      /       2   \                                                 3   
    3      6*cos (x)   4*\1 + tan (x)/    2*\1 + tan (x)/      /       2   \          5*x*cos(x)   6*x*cos (x)
- ------ - --------- - ---------------- + ---------------- + 4*\1 + tan (x)/*tan(x) + ---------- + -----------
  sin(x)       3            tan(x)               3                                        2             4     
            sin (x)                           tan (x)                                  sin (x)       sin (x)  
$$\frac{5 x \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{6 x \cos^{3}{\left(x \right)}}{\sin^{4}{\left(x \right)}} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{3}}{\tan^{3}{\left(x \right)}} - \frac{4 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan{\left(x \right)}} + 4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} - \frac{3}{\sin{\left(x \right)}} - \frac{6 \cos^{2}{\left(x \right)}}{\sin^{3}{\left(x \right)}}$$