Mister Exam

Derivative of sin2x/sinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(2*x)
--------
 sin(x) 
$$\frac{\sin{\left(2 x \right)}}{\sin{\left(x \right)}}$$
sin(2*x)/sin(x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. The derivative of sine is cosine:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
2*cos(2*x)   cos(x)*sin(2*x)
---------- - ---------------
  sin(x)            2       
                 sin (x)    
$$\frac{2 \cos{\left(2 x \right)}}{\sin{\left(x \right)}} - \frac{\sin{\left(2 x \right)} \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$
The second derivative [src]
              /         2   \                             
              |    2*cos (x)|            4*cos(x)*cos(2*x)
-4*sin(2*x) + |1 + ---------|*sin(2*x) - -----------------
              |        2    |                  sin(x)     
              \     sin (x) /                             
----------------------------------------------------------
                          sin(x)                          
$$\frac{\left(1 + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \sin{\left(2 x \right)} - 4 \sin{\left(2 x \right)} - \frac{4 \cos{\left(x \right)} \cos{\left(2 x \right)}}{\sin{\left(x \right)}}}{\sin{\left(x \right)}}$$
The third derivative [src]
                                                                /         2   \                
                                                                |    6*cos (x)|                
                                                                |5 + ---------|*cos(x)*sin(2*x)
                /         2   \                                 |        2    |                
                |    2*cos (x)|            12*cos(x)*sin(2*x)   \     sin (x) /                
-8*cos(2*x) + 6*|1 + ---------|*cos(2*x) + ------------------ - -------------------------------
                |        2    |                  sin(x)                      sin(x)            
                \     sin (x) /                                                                
-----------------------------------------------------------------------------------------------
                                             sin(x)                                            
$$\frac{6 \left(1 + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(2 x \right)} - \frac{\left(5 + \frac{6 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \sin{\left(2 x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}} - 8 \cos{\left(2 x \right)} + \frac{12 \sin{\left(2 x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}}}{\sin{\left(x \right)}}$$
The graph
Derivative of sin2x/sinx