sin(2*x) -------- sin(x)
sin(2*x)/sin(x)
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
The derivative of sine is cosine:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2*cos(2*x) cos(x)*sin(2*x)
---------- - ---------------
sin(x) 2
sin (x)
/ 2 \
| 2*cos (x)| 4*cos(x)*cos(2*x)
-4*sin(2*x) + |1 + ---------|*sin(2*x) - -----------------
| 2 | sin(x)
\ sin (x) /
----------------------------------------------------------
sin(x)
/ 2 \
| 6*cos (x)|
|5 + ---------|*cos(x)*sin(2*x)
/ 2 \ | 2 |
| 2*cos (x)| 12*cos(x)*sin(2*x) \ sin (x) /
-8*cos(2*x) + 6*|1 + ---------|*cos(2*x) + ------------------ - -------------------------------
| 2 | sin(x) sin(x)
\ sin (x) /
-----------------------------------------------------------------------------------------------
sin(x)