Mister Exam

Derivative of tgx/(sinx-cosx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     tan(x)    
---------------
sin(x) - cos(x)
$$\frac{\tan{\left(x \right)}}{\sin{\left(x \right)} - \cos{\left(x \right)}}$$
tan(x)/(sin(x) - cos(x))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of cosine is negative sine:

      Now plug in to the quotient rule:

    To find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosine is negative sine:

        So, the result is:

      2. The derivative of sine is cosine:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
         2                                 
  1 + tan (x)     (-cos(x) - sin(x))*tan(x)
--------------- + -------------------------
sin(x) - cos(x)                        2   
                      (sin(x) - cos(x))    
$$\frac{\left(- \sin{\left(x \right)} - \cos{\left(x \right)}\right) \tan{\left(x \right)}}{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2}} + \frac{\tan^{2}{\left(x \right)} + 1}{\sin{\left(x \right)} - \cos{\left(x \right)}}$$
The second derivative [src]
/                       2\                                     /       2   \                  
|    2*(cos(x) + sin(x)) |            /       2   \          2*\1 + tan (x)/*(cos(x) + sin(x))
|1 + --------------------|*tan(x) + 2*\1 + tan (x)/*tan(x) - ---------------------------------
|                      2 |                                            -cos(x) + sin(x)        
\    (-cos(x) + sin(x))  /                                                                    
----------------------------------------------------------------------------------------------
                                       -cos(x) + sin(x)                                       
$$\frac{\left(1 + \frac{2 \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}}{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2}}\right) \tan{\left(x \right)} + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} - \frac{2 \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right)}{\sin{\left(x \right)} - \cos{\left(x \right)}}}{\sin{\left(x \right)} - \cos{\left(x \right)}}$$
The third derivative [src]
                                                                               /                       2\                                                                    
                                                                               |    6*(cos(x) + sin(x)) |                                                                    
                                                                               |5 + --------------------|*(cos(x) + sin(x))*tan(x)                                           
                                                  /                       2\   |                      2 |                              /       2   \                         
  /       2   \ /         2   \     /       2   \ |    2*(cos(x) + sin(x)) |   \    (-cos(x) + sin(x))  /                            6*\1 + tan (x)/*(cos(x) + sin(x))*tan(x)
2*\1 + tan (x)/*\1 + 3*tan (x)/ + 3*\1 + tan (x)/*|1 + --------------------| - --------------------------------------------------- - ----------------------------------------
                                                  |                      2 |                     -cos(x) + sin(x)                                -cos(x) + sin(x)            
                                                  \    (-cos(x) + sin(x))  /                                                                                                 
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                               -cos(x) + sin(x)                                                                              
$$\frac{3 \left(1 + \frac{2 \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}}{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2}}\right) \left(\tan^{2}{\left(x \right)} + 1\right) - \frac{\left(5 + \frac{6 \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}}{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2}}\right) \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) \tan{\left(x \right)}}{\sin{\left(x \right)} - \cos{\left(x \right)}} + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) - \frac{6 \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{\sin{\left(x \right)} - \cos{\left(x \right)}}}{\sin{\left(x \right)} - \cos{\left(x \right)}}$$
The graph
Derivative of tgx/(sinx-cosx)