tan(x) --------------- sin(x) - cos(x)
tan(x)/(sin(x) - cos(x))
Apply the quotient rule, which is:
and .
To find :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
To find :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of cosine is negative sine:
So, the result is:
The derivative of sine is cosine:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 1 + tan (x) (-cos(x) - sin(x))*tan(x) --------------- + ------------------------- sin(x) - cos(x) 2 (sin(x) - cos(x))
/ 2\ / 2 \ | 2*(cos(x) + sin(x)) | / 2 \ 2*\1 + tan (x)/*(cos(x) + sin(x)) |1 + --------------------|*tan(x) + 2*\1 + tan (x)/*tan(x) - --------------------------------- | 2 | -cos(x) + sin(x) \ (-cos(x) + sin(x)) / ---------------------------------------------------------------------------------------------- -cos(x) + sin(x)
/ 2\ | 6*(cos(x) + sin(x)) | |5 + --------------------|*(cos(x) + sin(x))*tan(x) / 2\ | 2 | / 2 \ / 2 \ / 2 \ / 2 \ | 2*(cos(x) + sin(x)) | \ (-cos(x) + sin(x)) / 6*\1 + tan (x)/*(cos(x) + sin(x))*tan(x) 2*\1 + tan (x)/*\1 + 3*tan (x)/ + 3*\1 + tan (x)/*|1 + --------------------| - --------------------------------------------------- - ---------------------------------------- | 2 | -cos(x) + sin(x) -cos(x) + sin(x) \ (-cos(x) + sin(x)) / ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- -cos(x) + sin(x)