Mister Exam

Other calculators


2^x^2

Derivative of 2^x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 / 2\
 \x /
2    
2x22^{x^{2}}
  / / 2\\
d | \x /|
--\2    /
dx       
ddx2x2\frac{d}{d x} 2^{x^{2}}
Detail solution
  1. Let u=x2u = x^{2}.

  2. ddu2u=2ulog(2)\frac{d}{d u} 2^{u} = 2^{u} \log{\left(2 \right)}

  3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} x^{2}:

    1. Apply the power rule: x2x^{2} goes to 2x2 x

    The result of the chain rule is:

    22x2xlog(2)2 \cdot 2^{x^{2}} x \log{\left(2 \right)}

  4. Now simplify:

    2x2+1xlog(2)2^{x^{2} + 1} x \log{\left(2 \right)}


The answer is:

2x2+1xlog(2)2^{x^{2} + 1} x \log{\left(2 \right)}

The graph
02468-8-6-4-2-1010-2e312e31
The first derivative [src]
     / 2\       
     \x /       
2*x*2    *log(2)
22x2xlog(2)2 \cdot 2^{x^{2}} x \log{\left(2 \right)}
The second derivative [src]
   / 2\                         
   \x / /       2       \       
2*2    *\1 + 2*x *log(2)/*log(2)
22x2(2x2log(2)+1)log(2)2 \cdot 2^{x^{2}} \cdot \left(2 x^{2} \log{\left(2 \right)} + 1\right) \log{\left(2 \right)}
The third derivative [src]
     / 2\                          
     \x /    2    /       2       \
4*x*2    *log (2)*\3 + 2*x *log(2)/
42x2x(2x2log(2)+3)log(2)24 \cdot 2^{x^{2}} x \left(2 x^{2} \log{\left(2 \right)} + 3\right) \log{\left(2 \right)}^{2}
The graph
Derivative of 2^x^2