/ 2\ \x / 2
/ / 2\\ d | \x /| --\2 / dx
Let u=x2u = x^{2}u=x2.
ddu2u=2ulog(2)\frac{d}{d u} 2^{u} = 2^{u} \log{\left(2 \right)}dud2u=2ulog(2)
Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} x^{2}dxdx2:
Apply the power rule: x2x^{2}x2 goes to 2x2 x2x
The result of the chain rule is:
Now simplify:
The answer is:
/ 2\ \x / 2*x*2 *log(2)
/ 2\ \x / / 2 \ 2*2 *\1 + 2*x *log(2)/*log(2)
/ 2\ \x / 2 / 2 \ 4*x*2 *log (2)*\3 + 2*x *log(2)/