Mister Exam

Derivative of arccos(2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
acos(2*x)
$$\operatorname{acos}{\left(2 x \right)}$$
d            
--(acos(2*x))
dx           
$$\frac{d}{d x} \operatorname{acos}{\left(2 x \right)}$$
The graph
The first derivative [src]
     -2      
-------------
   __________
  /        2 
\/  1 - 4*x  
$$- \frac{2}{\sqrt{- 4 x^{2} + 1}}$$
The second derivative [src]
     -8*x    
-------------
          3/2
/       2\   
\1 - 4*x /   
$$- \frac{8 x}{\left(- 4 x^{2} + 1\right)^{\frac{3}{2}}}$$
The third derivative [src]
   /         2  \
   |     12*x   |
-8*|1 + --------|
   |           2|
   \    1 - 4*x /
-----------------
            3/2  
  /       2\     
  \1 - 4*x /     
$$- \frac{8 \cdot \left(\frac{12 x^{2}}{- 4 x^{2} + 1} + 1\right)}{\left(- 4 x^{2} + 1\right)^{\frac{3}{2}}}$$
The graph
Derivative of arccos(2x)