______________ \/ 1 + cos(2*x)
sqrt(1 + cos(2*x))
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
-sin(2*x) ---------------- ______________ \/ 1 + cos(2*x)
/ 2 \
| sin (2*x) |
-|2*cos(2*x) + ------------|
\ 1 + cos(2*x)/
-----------------------------
______________
\/ 1 + cos(2*x)
/ 2 \
| 6*cos(2*x) 3*sin (2*x) |
|4 - ------------ - ---------------|*sin(2*x)
| 1 + cos(2*x) 2|
\ (1 + cos(2*x)) /
---------------------------------------------
______________
\/ 1 + cos(2*x)