__________________ / _____________ 4 / / 2 \/ \/ 1 + cos (x)
(sqrt(1 + cos(x)^2))^(1/4)
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
_____________
8 / 2
-\/ 1 + cos (x) *cos(x)*sin(x)
--------------------------------
/ 2 \
4*\1 + cos (x)/
2 2
2 2 7*cos (x)*sin (x)
- 4*cos (x) + 4*sin (x) - -----------------
2
1 + cos (x)
-------------------------------------------
7/8
/ 2 \
16*\1 + cos (x)/
/ 2 2 2 2 \
| 21*cos (x) 21*sin (x) 105*cos (x)*sin (x)|
|1 - ---------------- + ---------------- - -------------------|*cos(x)*sin(x)
| / 2 \ / 2 \ 2 |
| 16*\1 + cos (x)/ 16*\1 + cos (x)/ / 2 \ |
\ 64*\1 + cos (x)/ /
-----------------------------------------------------------------------------
7/8
/ 2 \
\1 + cos (x)/