Mister Exam

Other calculators

Derivative of (sqrt(1+cos^2x))^(1/4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    __________________
   /    _____________ 
4 /    /        2     
\/   \/  1 + cos (x)  
$$\sqrt[4]{\sqrt{\cos^{2}{\left(x \right)} + 1}}$$
(sqrt(1 + cos(x)^2))^(1/4)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Let .

        3. Apply the power rule: goes to

        4. Then, apply the chain rule. Multiply by :

          1. The derivative of cosine is negative sine:

          The result of the chain rule is:

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    _____________               
 8 /        2                   
-\/  1 + cos (x) *cos(x)*sin(x) 
--------------------------------
          /       2   \         
        4*\1 + cos (x)/         
$$- \frac{\sqrt[8]{\cos^{2}{\left(x \right)} + 1} \sin{\left(x \right)} \cos{\left(x \right)}}{4 \left(\cos^{2}{\left(x \right)} + 1\right)}$$
The second derivative [src]
                               2       2   
       2           2      7*cos (x)*sin (x)
- 4*cos (x) + 4*sin (x) - -----------------
                                    2      
                             1 + cos (x)   
-------------------------------------------
                            7/8            
               /       2   \               
            16*\1 + cos (x)/               
$$\frac{4 \sin^{2}{\left(x \right)} - 4 \cos^{2}{\left(x \right)} - \frac{7 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} + 1}}{16 \left(\cos^{2}{\left(x \right)} + 1\right)^{\frac{7}{8}}}$$
The third derivative [src]
/             2                  2                2       2   \              
|       21*cos (x)         21*sin (x)      105*cos (x)*sin (x)|              
|1 - ---------------- + ---------------- - -------------------|*cos(x)*sin(x)
|       /       2   \      /       2   \                    2 |              
|    16*\1 + cos (x)/   16*\1 + cos (x)/       /       2   \  |              
\                                           64*\1 + cos (x)/  /              
-----------------------------------------------------------------------------
                                            7/8                              
                               /       2   \                                 
                               \1 + cos (x)/                                 
$$\frac{\left(1 + \frac{21 \sin^{2}{\left(x \right)}}{16 \left(\cos^{2}{\left(x \right)} + 1\right)} - \frac{21 \cos^{2}{\left(x \right)}}{16 \left(\cos^{2}{\left(x \right)} + 1\right)} - \frac{105 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}{64 \left(\cos^{2}{\left(x \right)} + 1\right)^{2}}\right) \sin{\left(x \right)} \cos{\left(x \right)}}{\left(\cos^{2}{\left(x \right)} + 1\right)^{\frac{7}{8}}}$$