Mister Exam

Derivative of sqrt(1-cos2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ______________
\/ 1 - cos(2*x) 
$$\sqrt{1 - \cos{\left(2 x \right)}}$$
sqrt(1 - cos(2*x))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    sin(2*x)    
----------------
  ______________
\/ 1 - cos(2*x) 
$$\frac{\sin{\left(2 x \right)}}{\sqrt{1 - \cos{\left(2 x \right)}}}$$
The second derivative [src]
                 2       
              sin (2*x)  
2*cos(2*x) - ------------
             1 - cos(2*x)
-------------------------
       ______________    
     \/ 1 - cos(2*x)     
$$\frac{2 \cos{\left(2 x \right)} - \frac{\sin^{2}{\left(2 x \right)}}{1 - \cos{\left(2 x \right)}}}{\sqrt{1 - \cos{\left(2 x \right)}}}$$
The third derivative [src]
/                           2       \         
|      6*cos(2*x)      3*sin (2*x)  |         
|-4 - ------------ + ---------------|*sin(2*x)
|     1 - cos(2*x)                 2|         
\                    (1 - cos(2*x)) /         
----------------------------------------------
                 ______________               
               \/ 1 - cos(2*x)                
$$\frac{\left(-4 - \frac{6 \cos{\left(2 x \right)}}{1 - \cos{\left(2 x \right)}} + \frac{3 \sin^{2}{\left(2 x \right)}}{\left(1 - \cos{\left(2 x \right)}\right)^{2}}\right) \sin{\left(2 x \right)}}{\sqrt{1 - \cos{\left(2 x \right)}}}$$