Mister Exam

Other calculators


y=ln^3(sec(x))

Derivative of y=ln^3(sec(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3        
log (sec(x))
log(sec(x))3\log{\left(\sec{\left(x \right)} \right)}^{3}
d /   3        \
--\log (sec(x))/
dx              
ddxlog(sec(x))3\frac{d}{d x} \log{\left(\sec{\left(x \right)} \right)}^{3}
Detail solution
  1. Let u=log(sec(x))u = \log{\left(\sec{\left(x \right)} \right)}.

  2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

  3. Then, apply the chain rule. Multiply by ddxlog(sec(x))\frac{d}{d x} \log{\left(\sec{\left(x \right)} \right)}:

    1. Let u=sec(x)u = \sec{\left(x \right)}.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddxsec(x)\frac{d}{d x} \sec{\left(x \right)}:

      1. Rewrite the function to be differentiated:

        sec(x)=1cos(x)\sec{\left(x \right)} = \frac{1}{\cos{\left(x \right)}}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

      3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

      4. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        The result of the chain rule is:

        sin(x)cos2(x)\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}

      The result of the chain rule is:

      sin(x)cos2(x)sec(x)\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)} \sec{\left(x \right)}}

    The result of the chain rule is:

    3log(sec(x))2sin(x)cos2(x)sec(x)\frac{3 \log{\left(\sec{\left(x \right)} \right)}^{2} \sin{\left(x \right)}}{\cos^{2}{\left(x \right)} \sec{\left(x \right)}}

  4. Now simplify:

    3log(1cos(x))2tan(x)3 \log{\left(\frac{1}{\cos{\left(x \right)}} \right)}^{2} \tan{\left(x \right)}


The answer is:

3log(1cos(x))2tan(x)3 \log{\left(\frac{1}{\cos{\left(x \right)}} \right)}^{2} \tan{\left(x \right)}

The graph
02468-8-6-4-2-1010-20002000
The first derivative [src]
     2               
3*log (sec(x))*tan(x)
3log(sec(x))2tan(x)3 \log{\left(\sec{\left(x \right)} \right)}^{2} \tan{\left(x \right)}
The second derivative [src]
  /     2      /       2   \            \            
3*\2*tan (x) + \1 + tan (x)/*log(sec(x))/*log(sec(x))
3((tan2(x)+1)log(sec(x))+2tan2(x))log(sec(x))3 \left(\left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(\sec{\left(x \right)} \right)} + 2 \tan^{2}{\left(x \right)}\right) \log{\left(\sec{\left(x \right)} \right)}
The third derivative [src]
  /   2         2         /       2   \     /       2   \            \       
6*\tan (x) + log (sec(x))*\1 + tan (x)/ + 3*\1 + tan (x)/*log(sec(x))/*tan(x)
6((tan2(x)+1)log(sec(x))2+3(tan2(x)+1)log(sec(x))+tan2(x))tan(x)6 \left(\left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(\sec{\left(x \right)} \right)}^{2} + 3 \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(\sec{\left(x \right)} \right)} + \tan^{2}{\left(x \right)}\right) \tan{\left(x \right)}
The graph
Derivative of y=ln^3(sec(x))