Mister Exam

Other calculators

Derivative of 4sqrt(1+cos^2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     _____________
    /        2    
4*\/  1 + cos (x) 
$$4 \sqrt{\cos^{2}{\left(x \right)} + 1}$$
4*sqrt(1 + cos(x)^2)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Let .

        3. Apply the power rule: goes to

        4. Then, apply the chain rule. Multiply by :

          1. The derivative of cosine is negative sine:

          The result of the chain rule is:

        The result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
-4*cos(x)*sin(x)
----------------
   _____________
  /        2    
\/  1 + cos (x) 
$$- \frac{4 \sin{\left(x \right)} \cos{\left(x \right)}}{\sqrt{\cos^{2}{\left(x \right)} + 1}}$$
The second derivative [src]
   /                       2       2   \
   |   2         2      cos (x)*sin (x)|
-4*|cos (x) - sin (x) + ---------------|
   |                             2     |
   \                      1 + cos (x)  /
----------------------------------------
               _____________            
              /        2                
            \/  1 + cos (x)             
$$- \frac{4 \left(- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)} + \frac{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} + 1}\right)}{\sqrt{\cos^{2}{\left(x \right)} + 1}}$$
The third derivative [src]
  /          2             2            2       2   \              
  |     3*cos (x)     3*sin (x)    3*cos (x)*sin (x)|              
4*|4 - ----------- + ----------- - -----------------|*cos(x)*sin(x)
  |           2             2                     2 |              
  |    1 + cos (x)   1 + cos (x)     /       2   \  |              
  \                                  \1 + cos (x)/  /              
-------------------------------------------------------------------
                             _____________                         
                            /        2                             
                          \/  1 + cos (x)                          
$$\frac{4 \left(4 + \frac{3 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} + 1} - \frac{3 \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} + 1} - \frac{3 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}{\left(\cos^{2}{\left(x \right)} + 1\right)^{2}}\right) \sin{\left(x \right)} \cos{\left(x \right)}}{\sqrt{\cos^{2}{\left(x \right)} + 1}}$$