Mister Exam

Derivative of ln(tgx/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /tan(x)\
log|------|
   \  2   /
$$\log{\left(\frac{\tan{\left(x \right)}}{2} \right)}$$
d /   /tan(x)\\
--|log|------||
dx\   \  2   //
$$\frac{d}{d x} \log{\left(\frac{\tan{\left(x \right)}}{2} \right)}$$
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of sine is cosine:

        To find :

        1. The derivative of cosine is negative sine:

        Now plug in to the quotient rule:

      So, the result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
  /       2   \
  |1   tan (x)|
2*|- + -------|
  \2      2   /
---------------
     tan(x)    
$$\frac{2 \left(\frac{\tan^{2}{\left(x \right)}}{2} + \frac{1}{2}\right)}{\tan{\left(x \right)}}$$
The second derivative [src]
                             2
                /       2   \ 
         2      \1 + tan (x)/ 
2 + 2*tan (x) - --------------
                      2       
                   tan (x)    
$$2 \tan^{2}{\left(x \right)} - \frac{\left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan^{2}{\left(x \right)}} + 2$$
The third derivative [src]
                /                        2                  \
                |           /       2   \      /       2   \|
  /       2   \ |           \1 + tan (x)/    2*\1 + tan (x)/|
2*\1 + tan (x)/*|2*tan(x) + -------------- - ---------------|
                |                 3               tan(x)    |
                \              tan (x)                      /
$$2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(2 \tan{\left(x \right)} - \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)}{\tan{\left(x \right)}} + \frac{\left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan^{3}{\left(x \right)}}\right)$$
The graph
Derivative of ln(tgx/2)