cos(log(x))
Let u=log(x)u = \log{\left(x \right)}u=log(x).
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by ddxlog(x)\frac{d}{d x} \log{\left(x \right)}dxdlog(x):
The derivative of log(x)\log{\left(x \right)}log(x) is 1x\frac{1}{x}x1.
The result of the chain rule is:
The answer is:
-sin(log(x)) ------------- x
-cos(log(x)) + sin(log(x)) -------------------------- 2 x
-sin(log(x)) + 3*cos(log(x)) ---------------------------- 3 x