Mister Exam

Other calculators


1/sqrt(1-2x)

Derivative of 1/sqrt(1-2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     1     
-----------
  _________
\/ 1 - 2*x 
112x\frac{1}{\sqrt{1 - 2 x}}
Detail solution
  1. Let u=12xu = \sqrt{1 - 2 x}.

  2. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

  3. Then, apply the chain rule. Multiply by ddx12x\frac{d}{d x} \sqrt{1 - 2 x}:

    1. Let u=12xu = 1 - 2 x.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(12x)\frac{d}{d x} \left(1 - 2 x\right):

      1. Differentiate 12x1 - 2 x term by term:

        1. The derivative of the constant 11 is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 2-2

        The result is: 2-2

      The result of the chain rule is:

      112x- \frac{1}{\sqrt{1 - 2 x}}

    The result of the chain rule is:

    1(12x)32\frac{1}{\left(1 - 2 x\right)^{\frac{3}{2}}}


The answer is:

1(12x)32\frac{1}{\left(1 - 2 x\right)^{\frac{3}{2}}}

The graph
02468-8-6-4-2-101005
The first derivative [src]
          1          
---------------------
            _________
(1 - 2*x)*\/ 1 - 2*x 
112x(12x)\frac{1}{\sqrt{1 - 2 x} \left(1 - 2 x\right)}
The second derivative [src]
     3      
------------
         5/2
(1 - 2*x)   
3(12x)52\frac{3}{\left(1 - 2 x\right)^{\frac{5}{2}}}
The third derivative [src]
     15     
------------
         7/2
(1 - 2*x)   
15(12x)72\frac{15}{\left(1 - 2 x\right)^{\frac{7}{2}}}
3-я производная [src]
     15     
------------
         7/2
(1 - 2*x)   
15(12x)72\frac{15}{\left(1 - 2 x\right)^{\frac{7}{2}}}
The graph
Derivative of 1/sqrt(1-2x)