Mister Exam

Other calculators


y=ln(tg(x/2))-x/sinx

Derivative of y=ln(tg(x/2))-x/sinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   /x\\     x   
log|tan|-|| - ------
   \   \2//   sin(x)
$$- \frac{x}{\sin{\left(x \right)}} + \log{\left(\tan{\left(\frac{x}{2} \right)} \right)}$$
log(tan(x/2)) - x/sin(x)
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Apply the power rule: goes to

        To find :

        1. The derivative of sine is cosine:

        Now plug in to the quotient rule:

      So, the result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                  2/x\           
               tan |-|           
           1       \2/           
           - + -------           
    1      2      2      x*cos(x)
- ------ + ----------- + --------
  sin(x)         /x\        2    
              tan|-|     sin (x) 
                 \2/             
$$\frac{x \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{\frac{\tan^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{1}{2}}{\tan{\left(\frac{x}{2} \right)}} - \frac{1}{\sin{\left(x \right)}}$$
The second derivative [src]
                                               2              
       2/x\                       /       2/x\\               
    tan |-|                       |1 + tan |-||           2   
1       \2/     x      2*cos(x)   \        \2//    2*x*cos (x)
- + ------- - ------ + -------- - -------------- - -----------
2      2      sin(x)      2              2/x\           3     
                       sin (x)      4*tan |-|        sin (x)  
                                          \2/                 
$$- \frac{x}{\sin{\left(x \right)}} - \frac{2 x \cos^{2}{\left(x \right)}}{\sin^{3}{\left(x \right)}} - \frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}}{4 \tan^{2}{\left(\frac{x}{2} \right)}} + \frac{\tan^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{1}{2} + \frac{2 \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$
The third derivative [src]
                                                           2                3                           
           /       2/x\\    /x\               /       2/x\\    /       2/x\\                            
           |1 + tan |-||*tan|-|        2      |1 + tan |-||    |1 + tan |-||                        3   
    3      \        \2//    \2/   6*cos (x)   \        \2//    \        \2//    5*x*cos(x)   6*x*cos (x)
- ------ + -------------------- - --------- - -------------- + -------------- + ---------- + -----------
  sin(x)            2                 3               /x\             3/x\          2             4     
                                   sin (x)       2*tan|-|        4*tan |-|       sin (x)       sin (x)  
                                                      \2/              \2/                              
$$\frac{5 x \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{6 x \cos^{3}{\left(x \right)}}{\sin^{4}{\left(x \right)}} + \frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{3}}{4 \tan^{3}{\left(\frac{x}{2} \right)}} - \frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}}{2 \tan{\left(\frac{x}{2} \right)}} + \frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right) \tan{\left(\frac{x}{2} \right)}}{2} - \frac{3}{\sin{\left(x \right)}} - \frac{6 \cos^{2}{\left(x \right)}}{\sin^{3}{\left(x \right)}}$$
The graph
Derivative of y=ln(tg(x/2))-x/sinx